Broecker, W. The Nice Ocean Conveyor: Discovering the Set off for Abrupt Local weather Change (Princeton Univ. Press, 2010).
Orcutt, B. N., Daniel, I. & Dasgupta, R. Deep Carbon: Previous to Current (Cambridge Univ. Press, 2019).This e-book offers a assessment of carbon contained in the Earth, together with its portions, actions, types, origins, modifications over time and impacts on planetary processes.
Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its impact on atmospheric carbon dioxide over the previous 100 million years. Am. J. Sci. 283, 641–683 (1983).
ADS
CAS
Article
Google Scholar
Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s inside. Earth Planet. Sci. Lett. 298, 1–13 (2010).
ADS
CAS
Article
Google Scholar
Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth floor temperature from late Neoproterozoic to current day. Gondwana Res. 67, 172–186 (2019). A synthesis of estimates for world common floor temperature, atmospheric CO2 focus and predictions of field fashions of the long-term carbon cycle.
ADS
CAS
Article
Google Scholar
Werner, C. et al. in Deep Carbon: Previous to Current (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).
Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2 (Oxford Univ. Press, 2004).
Garrels, R. M. & MacKenzie, F. T. A quantitative mannequin for the sedimentary rock cycle. Mar. Chem. 1, 27–41 (1972).
Article
Google Scholar
Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, largely comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015). This assessment summarizes carbon inputs and outputs to the mantle and emphasizes the potential for carbon to be effectively recycled from the slab and doubtlessly saved within the arc lithosphere.
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68 (2017).
ADS
CAS
Article
Google Scholar
Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019). A assessment of the present-day processes and fluxes concerned in subducting and recycling carbon.
ADS
CAS
PubMed
Article
Google Scholar
Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).
ADS
Article
CAS
Google Scholar
Bekaert, D. et al. Subduction-driven risky recycling: a world mass steadiness. Ann. Rev. Earth Sci. 49, 37–70 (2021). This assessment offers an outline of Earth’s risky stock and the mechanisms by which volatiles are transferred between Earth reservoirs by way of subduction.
ADS
CAS
Article
Google Scholar
Wong, Ok. et al. Deep carbon biking over the previous 200 million years: a assessment of fluxes in several tectonic settings. Entrance. Earth Sci. 7, 263 (2019).
ADS
Article
Google Scholar
Müller, R. D. et al. A worldwide plate mannequin together with lithospheric deformation alongside main rifts and orogens because the Triassic. Tectonics 38, 1884–1907 (2019). A worldwide plate tectonic mannequin for the Mesozoic and Cenozoic eras, together with the evolution of plate boundaries and plate deformation alongside rifts and orogens, which types the tectonic foundation for computing carbon fluxes by way of time.
ADS
Article
Google Scholar
Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate within the world ocean because the Early Cretaceous. Geology 47, 91–94 (2019). This paper presents a mannequin for the spatiotemporal evolution of deep-sea carbonate accumulation and subduction by way of time.
ADS
CAS
Article
Google Scholar
Gillis, Ok. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011). Ocean drilling information are used to mannequin how the precipitation of carbonate minerals in hydrothermally altered ocean crust depends upon crustal age and bottom-water temperature.
ADS
CAS
Article
Google Scholar
Clift, P. D. A revised price range for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).
ADS
Article
Google Scholar
Faccenda, M. Water within the slab: a trilogy. Tectonophysics 614, 1–30 (2014). Numerical fashions, along with geological and geophysical observations, reveal how slab bending throughout subduction causes fracturing, faulting and serpentinization of the oceanic lithosphere.
ADS
Article
Google Scholar
Nationwide Geophysical Information Middle/World Information Service (NGDC/WDS). NCEI/WDS World Important Earthquake Database (NOAA Nationwide Facilities for Environmental Info, accessed 2 December 2020); https://doi.org/10.7289/V5TD9V7K
Buffett, B. & Heuret, A. Curvature of subducted lithosphere from earthquake places within the Wadati–Benioff zone. Geochem. Geophys. Geosyst. 12, Q06010 (2011).
ADS
Article
CAS
Google Scholar
Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004). A assessment of the parameters controlling the tectonic accretion and erosion of sediments alongside subduction zones.
ADS
Article
Google Scholar
Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).
ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted higher oceanic lithosphere for the previous 320 Ma. Entrance. Earth Sci. 7, 332 (2019). A mannequin explaining how seafloor spreading charges have ruled the storage and subduction of serpentinite within the oceanic lithosphere by way of time.
ADS
Article
Google Scholar
Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gasoline contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).
ADS
CAS
Article
Google Scholar
Le Voyer, M., Kelley, Ok. A., Cottrell, E. & Hauri, E. Heterogeneity in mantle carbon content material from CO2-undersaturated basalts. Nat. Commun. 8, 14062 (2017).
ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Marty, B., Alexander, C. M. O. D. & Raymond, S. N. Primordial origins of Earth’s carbon. Rev. Mineral. Geochem. 75, 149–181 (2013).
CAS
Article
Google Scholar
Resing, J. A., Lupton, J. E., Feely, R. A. & Lilley, M. D. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet. Sci. Lett. 226, 449–464 (2004).
ADS
CAS
Article
Google Scholar
Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion construction defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge. J. Geophys. Res. Stable Earth 103, 9857–9866 (1998).
Article
Google Scholar
Cannat, M., Fontaine, F. & Escartin, J. in Range of Hydrothermal Programs on Gradual Spreading Ocean Ridges (eds Rona, P. A. et al.) 241–264 (American Geophysical Union, 2010).
Alt, J. C. & Teagle, D. A. H. The uptake of carbon throughout alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).
ADS
CAS
Article
Google Scholar
Hay, W. W. in Coccolithophores—From Molecular Processes to World Influence (eds Thierstein, H. R. & Younger, J. R.) 509–528 (Springer, 2004).
Roth, P. H. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Particular Publication No. 21, 1986).
Connolly, J. A. D. The geodynamic equation of state: what and the way. Geochem. Geophys. Geosyst. 10, Q10014 (2009).
ADS
Article
Google Scholar
Gonzalez, C. M., Gorczyk, W. & Gerya, T. Decarbonation of subducting slabs: Perception from petrological–thermomechanical modeling. Gondwana Res. 36, 314–332 (2016).
ADS
CAS
Article
Google Scholar
Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage within the altered oceanic crust: outcomes from ODP/IODP Gap 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).
ADS
CAS
Article
Google Scholar
Alt, J. C. et al. The position of serpentinites in biking of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).
ADS
CAS
Article
Google Scholar
Menzel, M. D., Garrido, C. J. & Sánchez-Vizcaíno, V. L. Fluid-mediated carbon launch from serpentinite-hosted carbonates throughout dehydration of antigorite-serpentinite in subduction zones. Earth Planet. Sci. Lett. 531, 115964 (2020).
CAS
Article
Google Scholar
Gorman, P. J., Kerrick, D. & Connolly, J. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).
ADS
Article
CAS
Google Scholar
Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293–296 (2001). The authors use part equilibria to quantify the evolution of CO2 and water by way of subduction zone metamorphism of deep-sea carbonates, that are a significant supply for carbon launched by arc volcanoes.
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Connolly, J. A. & Galvez, M. E. Electrolytic fluid speciation by Gibbs power minimization and implications for subduction zone mass switch. Earth Planet. Sci. Lett. 501, 90–102 (2018).
ADS
CAS
Article
Google Scholar
Kerrick, D. M. & Connolly, J. A. D. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26, 375–378 (1998).
ADS
CAS
Article
Google Scholar
Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and risky recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).
ADS
CAS
Article
Google Scholar
Ague, J. J. & Nicolescu, S. Carbon dioxide launched from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).
ADS
CAS
Article
Google Scholar
Farsang, S. et al. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12, 4311 (2021).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Stewart, E. M. & Ague, J. J. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat. Commun. 11, 6220 (2020).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Grassi, D., Schmidt, M. W. & Günther, D. Factor partitioning throughout carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature within the EM mantle elements. Earth Planet. Sci. Lett. 327, 84–96 (2012).
ADS
Article
CAS
Google Scholar
Solar, Y., Hier-Majumder, S., Xu, Y. & Walter, M. Stability and migration of slab-derived carbonate-rich melts above the transition zone. Earth Planet. Sci. Lett. 531, 116000 (2020).
CAS
Article
Google Scholar
East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction historical past reveals Cretaceous slab superflux as a potential trigger for the mid-Cretaceous plume pulse and superswell occasions. Gondwana Res. 79, 125–139 (2020).
ADS
Article
Google Scholar
Safonova, I., Litasov, Ok. & Maruyama, S. Triggers and sources of volatile-bearing plumes within the mantle transition zone. Geosci. Entrance. 6, 679–685 (2015).
CAS
Article
Google Scholar
Li, X., Zhang, C., Li, Y., Wang, Y. & Liu, L. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res. 66, 143–167 (2019).
ADS
CAS
Article
Google Scholar
Wu, F.-Y., Lin, J.-Q., Wilde, S. A. & Yang, J.-H. Nature and significance of the Early Cretaceous big igneous occasion in japanese China. Earth Planet. Sci. Lett. 233, 103–119 (2005).
ADS
CAS
Article
Google Scholar
Cao, X., Flament, N., Li, S. & Müller, R. D. Spatio-temporal evolution and dynamic origin of Jurassic–Cretaceous magmatism within the South China Block. Earth Sci. Rev. 217, 103605 (2021).
Article
Google Scholar
Pepper, M. B. Magmatic historical past and crustal genesis of South America: constraints from U–Pb ages and Hf isotopes of detrital zircons in trendy rivers. Geosphere 12, 1532–1555 (2014).
ADS
Article
Google Scholar
Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the proof. Components 11, 91–98 (2015).
CAS
Article
Google Scholar
Li, Ok., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions point out altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).
ADS
CAS
Article
Google Scholar
Giuliani, A. & Pearson, D. G. Kimberlites: from deep earth to diamond mines. Components 15, 377–380 (2019).
CAS
Article
Google Scholar
Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for world kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).
ADS
CAS
Article
Google Scholar
Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites associated to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 303, 59–70 (2011). Low-angle subduction stabilizes hydrous minerals within the cool inside of the subducting plate over giant distances from the ditch and eventual partial melting of those minerals can drive diamond formation.
ADS
CAS
Article
Google Scholar
Weiss, Y., McNeill, J., Pearson, D. G., Nowell, G. M. & Ottley, C. J. Extremely saline fluids from a subducting slab because the supply for fluid-rich diamonds. Nature 524, 339–342 (2015).
ADS
CAS
PubMed
Article
Google Scholar
Foley, S. F., Yaxley, G. M. & Kjarsgaard, B. A. Kimberlites from supply to floor: insights from experiments. Components 15, 393–398 (2019).
CAS
Article
Google Scholar
Tappe, S., Good, Ok., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep risky cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).
ADS
CAS
Article
Google Scholar
Spandler, C. & Pirard, C. Factor recycling from subducting slabs to arc crust: a assessment. Lithos 170, 208–223 (2013).
ADS
Article
CAS
Google Scholar
Gorczyk, W., Gonzalez, C. M. & Hobbs, B. Carbon dioxide as a proxy for orogenic gold supply. Ore Geol. Rev. 127, 103829 (2020).
Article
Google Scholar
Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. The position of carbon dioxide within the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466 (2017).
ADS
CAS
Article
Google Scholar
Haas, J. R., Shock, E. L. & Sassani, D. C. Uncommon earth components in hydrothermal techniques: estimates of ordinary partial molal thermodynamic properties of aqueous complexes of the uncommon earth components at excessive pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995).
ADS
CAS
Article
Google Scholar
Phillips, G. N. & Evans, Ok. A. Position of CO2 within the formation of gold deposits. Nature 429, 860–863 (2004).
ADS
CAS
PubMed
Article
Google Scholar
Lee, C.-T. A., Jiang, H., Dasgupta, R. & Torres, M. in Deep Carbon: Previous to Current (eds Orcutt, B. N. et al.) 313–357 (Cambridge Univ. Press, 2019).This paper explains the deep carbon cycle suggestions loops concerned in the entire Earth-system evolution and local weather change.
Berner, R. A. A mannequin for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).
ADS
CAS
Article
Google Scholar
Berner, R. A. GEOCARBSULF: a mixed mannequin for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).
ADS
CAS
Article
Google Scholar
Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved mannequin of biogeochemical biking over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
ADS
CAS
Article
Google Scholar
Krissansen-Totton, J. & Catling, D. C. Constraining local weather sensitivity and continental versus seafloor weathering utilizing an inverse geological carbon cycle mannequin. Nat. Commun. 8, 15423 (2017).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Marcilly, C. M., Torsvik, T. H., Domeier, M. & Royer, D. L. New paleogeographic and degassing parameters for long-term carbon cycle fashions. Gondwana Res. 97, 176–203 (2021).
ADS
CAS
Article
Google Scholar
Wilkinson, B. H. & Walker, J. C. Phanerozoic biking of sedimentary carbonate. Am. J. Sci. 289, 525–548 (1989).
ADS
CAS
Article
Google Scholar
Caldeira, Ok. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992). This creator acknowledged that the gradual shift of carbonate deposition from continental to pelagic settings will need to have elevated the subduction of carbonates and their metamorphic decarbonation, leading to a Cenozoic improve in CO2 degassing from volcanic arcs.
ADS
CAS
Article
Google Scholar
Foster, G. L., Royer, D. L. & Lunt, D. J. Future local weather forcing doubtlessly with out precedent within the final 420 million years. Nat. Commun. 8, 14845 (2017).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Witkowski, C. R., Weijers, J. W., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular pCO2 development over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Gernon, T. et al. World chemical weathering dominated by continental arcs because the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021).
ADS
CAS
Article
Google Scholar
McKenzie, N. R. et al. Continental arc volcanism because the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).
ADS
CAS
PubMed
Article
Google Scholar
Pall, J. et al. The affect of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 because the Devonian. 14, 857–870 (2018).
Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc exercise since 750 Ma: a world compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).
ADS
CAS
Article
Google Scholar
Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution throughout two supercontinent cycles. World Planet. Change 173, 1–14 (2019).
ADS
Article
Google Scholar
Goddéris, Y. & Donnadieu, Y. A sink-or a source-driven carbon cycle on the geological timescale? Relative significance of palaeogeography versus strong Earth degassing charge within the Phanerozoic climatic evolution. Geol. Magazine. 156, 355–365 (2019).
ADS
Article
CAS
Google Scholar
Farnsworth, A. et al. Local weather sensitivity on geological timescales managed by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).
ADS
Article
Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, Ok. Traits, rhythms, and aberrations in world local weather 65 Ma to current. Science 292, 686–693 (2001).
ADS
CAS
PubMed
Article
Google Scholar
Bluth, G. J. S. & Kump, L. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).
ADS
Article
Google Scholar
Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Caves Rugenstein, J. Ok., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling pushed by land floor reactivity slightly than elevated weathering fluxes. Nature 571, 99–102 (2019).
ADS
CAS
PubMed
Article
Google Scholar
Misra, S. & Froelich, P. N. Lithium isotope historical past of Cenozoic seawater: modifications in silicate weathering and reverse weathering. Science 335, 818–823 (2012).
ADS
CAS
PubMed
Article
Google Scholar
Bernhardt, A. et al. 10Be/9Be ratios reveal marine authigenic clay formation. Geophys. Res. Lett. 47, e2019GL086061 (2020).
ADS
CAS
Article
Google Scholar
Li, S., Goldstein, S. L. & Raymo, M. E. Neogene continental denudation and the beryllium conundrum. Proc. Natl Acad. Sci. USA 118, e2026456118 (2021).
PubMed
PubMed Central
Article
CAS
Google Scholar
Dunlea, A. G., Murray, R. W., Ramos, D. P. S. & Higgins, J. A. Cenozoic world cooling and elevated seawater Mg/Ca through lowered reverse weathering. Nat. Commun. 8, 844 (2017).
ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary local weather. Nature 560, 471–475 (2018).
ADS
CAS
PubMed
Article
Google Scholar
Seton, M. et al. World continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
ADS
Article
Google Scholar
Brune, S., Williams, S. E. & Müller, R. D. Potential hyperlinks between continental rifting, CO2 degassing and local weather change by way of time. Nat. Geosci. 10, 941–946 (2017).
ADS
CAS
Article
Google Scholar
Syracuse, E. M., van Keken, P. E. & Abers, G. A. The worldwide vary of subduction zone thermal fashions. Phys. Earth Planet. Inter. 183, 73–90 (2010). Two-dimensional thermal modelling of a world set of kinematically outlined subduction-zone segments offers insights into the sources of fluid and soften.
ADS
Article
Google Scholar
Lunt, D. J. et al. DeepMIP: mannequin intercomparison of early Eocene climatic optimum (EECO) large-scale local weather options and comparability with proxy information. Clim. Previous Talk about. 17, 203–227 (2021).
Article
Google Scholar
Steinthorsdottir, M. et al. The Miocene: the way forward for the previous. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2020).
Google Scholar
Penman, D. E., Rugenstein, J. Ok. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a suggestions and forcing in Earth’s local weather and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).
CAS
Article
Google Scholar
Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the efficiency of previous local weather mannequin projections. Geophys. Res. Lett. 47, e2019GL085378 (2020).
ADS
Article
Google Scholar