Evolution of Earth’s tectonic carbon conveyor belt


  • Broecker, W. The Nice Ocean Conveyor: Discovering the Set off for Abrupt Local weather Change (Princeton Univ. Press, 2010).

  • Orcutt, B. N., Daniel, I. & Dasgupta, R. Deep Carbon: Previous to Current (Cambridge Univ. Press, 2019).This e-book offers a assessment of carbon contained in the Earth, together with its portions, actions, types, origins, modifications over time and impacts on planetary processes.

  • Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its impact on atmospheric carbon dioxide over the previous 100 million years. Am. J. Sci. 283, 641–683 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s inside. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth floor temperature from late Neoproterozoic to current day. Gondwana Res. 67, 172–186 (2019). A synthesis of estimates for world common floor temperature, atmospheric CO2 focus and predictions of field fashions of the long-term carbon cycle.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Werner, C. et al. in Deep Carbon: Previous to Current (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).

  • Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2 (Oxford Univ. Press, 2004).

  • Garrels, R. M. & MacKenzie, F. T. A quantitative mannequin for the sedimentary rock cycle. Mar. Chem. 1, 27–41 (1972).

    Article 

    Google Scholar 

  • Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, largely comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015). This assessment summarizes carbon inputs and outputs to the mantle and emphasizes the potential for carbon to be effectively recycled from the slab and doubtlessly saved within the arc lithosphere.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019). A assessment of the present-day processes and fluxes concerned in subducting and recycling carbon.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Bekaert, D. et al. Subduction-driven risky recycling: a world mass steadiness. Ann. Rev. Earth Sci. 49, 37–70 (2021). This assessment offers an outline of Earth’s risky stock and the mechanisms by which volatiles are transferred between Earth reservoirs by way of subduction.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wong, Ok. et al. Deep carbon biking over the previous 200 million years: a assessment of fluxes in several tectonic settings. Entrance. Earth Sci. 7, 263 (2019).

    ADS 
    Article 

    Google Scholar 

  • Müller, R. D. et al. A worldwide plate mannequin together with lithospheric deformation alongside main rifts and orogens because the Triassic. Tectonics 38, 1884–1907 (2019). A worldwide plate tectonic mannequin for the Mesozoic and Cenozoic eras, together with the evolution of plate boundaries and plate deformation alongside rifts and orogens, which types the tectonic foundation for computing carbon fluxes by way of time.

    ADS 
    Article 

    Google Scholar 

  • Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate within the world ocean because the Early Cretaceous. Geology 47, 91–94 (2019). This paper presents a mannequin for the spatiotemporal evolution of deep-sea carbonate accumulation and subduction by way of time.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gillis, Ok. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011). Ocean drilling information are used to mannequin how the precipitation of carbonate minerals in hydrothermally altered ocean crust depends upon crustal age and bottom-water temperature.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Clift, P. D. A revised price range for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).

    ADS 
    Article 

    Google Scholar 

  • Faccenda, M. Water within the slab: a trilogy. Tectonophysics 614, 1–30 (2014). Numerical fashions, along with geological and geophysical observations, reveal how slab bending throughout subduction causes fracturing, faulting and serpentinization of the oceanic lithosphere.

    ADS 
    Article 

    Google Scholar 

  • Nationwide Geophysical Information Middle/World Information Service (NGDC/WDS). NCEI/WDS World Important Earthquake Database (NOAA Nationwide Facilities for Environmental Info, accessed 2 December 2020); https://doi.org/10.7289/V5TD9V7K

  • Buffett, B. & Heuret, A. Curvature of subducted lithosphere from earthquake places within the Wadati–Benioff zone. Geochem. Geophys. Geosyst. 12, Q06010 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004). A assessment of the parameters controlling the tectonic accretion and erosion of sediments alongside subduction zones.

    ADS 
    Article 

    Google Scholar 

  • Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted higher oceanic lithosphere for the previous 320 Ma. Entrance. Earth Sci. 7, 332 (2019). A mannequin explaining how seafloor spreading charges have ruled the storage and subduction of serpentinite within the oceanic lithosphere by way of time.

    ADS 
    Article 

    Google Scholar 

  • Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gasoline contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Le Voyer, M., Kelley, Ok. A., Cottrell, E. & Hauri, E. Heterogeneity in mantle carbon content material from CO2-undersaturated basalts. Nat. Commun. 8, 14062 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Marty, B., Alexander, C. M. O. D. & Raymond, S. N. Primordial origins of Earth’s carbon. Rev. Mineral. Geochem. 75, 149–181 (2013).

    CAS 
    Article 

    Google Scholar 

  • Resing, J. A., Lupton, J. E., Feely, R. A. & Lilley, M. D. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet. Sci. Lett. 226, 449–464 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion construction defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge. J. Geophys. Res. Stable Earth 103, 9857–9866 (1998).

    Article 

    Google Scholar 

  • Cannat, M., Fontaine, F. & Escartin, J. in Range of Hydrothermal Programs on Gradual Spreading Ocean Ridges (eds Rona, P. A. et al.) 241–264 (American Geophysical Union, 2010).

  • Alt, J. C. & Teagle, D. A. H. The uptake of carbon throughout alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hay, W. W. in Coccolithophores—From Molecular Processes to World Influence (eds Thierstein, H. R. & Younger, J. R.) 509–528 (Springer, 2004).

  • Roth, P. H. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Particular Publication No. 21, 1986).

  • Connolly, J. A. D. The geodynamic equation of state: what and the way. Geochem. Geophys. Geosyst. 10, Q10014 (2009).

    ADS 
    Article 

    Google Scholar 

  • Gonzalez, C. M., Gorczyk, W. & Gerya, T. Decarbonation of subducting slabs: Perception from petrological–thermomechanical modeling. Gondwana Res. 36, 314–332 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage within the altered oceanic crust: outcomes from ODP/IODP Gap 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Alt, J. C. et al. The position of serpentinites in biking of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Menzel, M. D., Garrido, C. J. & Sánchez-Vizcaíno, V. L. Fluid-mediated carbon launch from serpentinite-hosted carbonates throughout dehydration of antigorite-serpentinite in subduction zones. Earth Planet. Sci. Lett. 531, 115964 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gorman, P. J., Kerrick, D. & Connolly, J. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293–296 (2001). The authors use part equilibria to quantify the evolution of CO2 and water by way of subduction zone metamorphism of deep-sea carbonates, that are a significant supply for carbon launched by arc volcanoes.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Connolly, J. A. & Galvez, M. E. Electrolytic fluid speciation by Gibbs power minimization and implications for subduction zone mass switch. Earth Planet. Sci. Lett. 501, 90–102 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kerrick, D. M. & Connolly, J. A. D. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26, 375–378 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and risky recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ague, J. J. & Nicolescu, S. Carbon dioxide launched from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Farsang, S. et al. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12, 4311 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stewart, E. M. & Ague, J. J. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat. Commun. 11, 6220 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grassi, D., Schmidt, M. W. & Günther, D. Factor partitioning throughout carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature within the EM mantle elements. Earth Planet. Sci. Lett. 327, 84–96 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Solar, Y., Hier-Majumder, S., Xu, Y. & Walter, M. Stability and migration of slab-derived carbonate-rich melts above the transition zone. Earth Planet. Sci. Lett. 531, 116000 (2020).

    CAS 
    Article 

    Google Scholar 

  • East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction historical past reveals Cretaceous slab superflux as a potential trigger for the mid-Cretaceous plume pulse and superswell occasions. Gondwana Res. 79, 125–139 (2020).

    ADS 
    Article 

    Google Scholar 

  • Safonova, I., Litasov, Ok. & Maruyama, S. Triggers and sources of volatile-bearing plumes within the mantle transition zone. Geosci. Entrance. 6, 679–685 (2015).

    CAS 
    Article 

    Google Scholar 

  • Li, X., Zhang, C., Li, Y., Wang, Y. & Liu, L. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res. 66, 143–167 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wu, F.-Y., Lin, J.-Q., Wilde, S. A. & Yang, J.-H. Nature and significance of the Early Cretaceous big igneous occasion in japanese China. Earth Planet. Sci. Lett. 233, 103–119 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao, X., Flament, N., Li, S. & Müller, R. D. Spatio-temporal evolution and dynamic origin of Jurassic–Cretaceous magmatism within the South China Block. Earth Sci. Rev. 217, 103605 (2021).

    Article 

    Google Scholar 

  • Pepper, M. B. Magmatic historical past and crustal genesis of South America: constraints from U–Pb ages and Hf isotopes of detrital zircons in trendy rivers. Geosphere 12, 1532–1555 (2014).

    ADS 
    Article 

    Google Scholar 

  • Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the proof. Components 11, 91–98 (2015).

    CAS 
    Article 

    Google Scholar 

  • Li, Ok., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions point out altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Giuliani, A. & Pearson, D. G. Kimberlites: from deep earth to diamond mines. Components 15, 377–380 (2019).

    CAS 
    Article 

    Google Scholar 

  • Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for world kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites associated to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 303, 59–70 (2011). Low-angle subduction stabilizes hydrous minerals within the cool inside of the subducting plate over giant distances from the ditch and eventual partial melting of those minerals can drive diamond formation.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Weiss, Y., McNeill, J., Pearson, D. G., Nowell, G. M. & Ottley, C. J. Extremely saline fluids from a subducting slab because the supply for fluid-rich diamonds. Nature 524, 339–342 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Foley, S. F., Yaxley, G. M. & Kjarsgaard, B. A. Kimberlites from supply to floor: insights from experiments. Components 15, 393–398 (2019).

    CAS 
    Article 

    Google Scholar 

  • Tappe, S., Good, Ok., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep risky cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Spandler, C. & Pirard, C. Factor recycling from subducting slabs to arc crust: a assessment. Lithos 170, 208–223 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Gorczyk, W., Gonzalez, C. M. & Hobbs, B. Carbon dioxide as a proxy for orogenic gold supply. Ore Geol. Rev. 127, 103829 (2020).

    Article 

    Google Scholar 

  • Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. The position of carbon dioxide within the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Haas, J. R., Shock, E. L. & Sassani, D. C. Uncommon earth components in hydrothermal techniques: estimates of ordinary partial molal thermodynamic properties of aqueous complexes of the uncommon earth components at excessive pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Phillips, G. N. & Evans, Ok. A. Position of CO2 within the formation of gold deposits. Nature 429, 860–863 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lee, C.-T. A., Jiang, H., Dasgupta, R. & Torres, M. in Deep Carbon: Previous to Current (eds Orcutt, B. N. et al.) 313–357 (Cambridge Univ. Press, 2019).This paper explains the deep carbon cycle suggestions loops concerned in the entire Earth-system evolution and local weather change.

  • Berner, R. A. A mannequin for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Berner, R. A. GEOCARBSULF: a mixed mannequin for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved mannequin of biogeochemical biking over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Krissansen-Totton, J. & Catling, D. C. Constraining local weather sensitivity and continental versus seafloor weathering utilizing an inverse geological carbon cycle mannequin. Nat. Commun. 8, 15423 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marcilly, C. M., Torsvik, T. H., Domeier, M. & Royer, D. L. New paleogeographic and degassing parameters for long-term carbon cycle fashions. Gondwana Res. 97, 176–203 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wilkinson, B. H. & Walker, J. C. Phanerozoic biking of sedimentary carbonate. Am. J. Sci. 289, 525–548 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Caldeira, Ok. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992). This creator acknowledged that the gradual shift of carbonate deposition from continental to pelagic settings will need to have elevated the subduction of carbonates and their metamorphic decarbonation, leading to a Cenozoic improve in CO2 degassing from volcanic arcs.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Foster, G. L., Royer, D. L. & Lunt, D. J. Future local weather forcing doubtlessly with out precedent within the final 420 million years. Nat. Commun. 8, 14845 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Witkowski, C. R., Weijers, J. W., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular pCO2 development over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gernon, T. et al. World chemical weathering dominated by continental arcs because the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McKenzie, N. R. et al. Continental arc volcanism because the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pall, J. et al. The affect of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 because the Devonian. 14, 857–870 (2018).

  • Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc exercise since 750 Ma: a world compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution throughout two supercontinent cycles. World Planet. Change 173, 1–14 (2019).

    ADS 
    Article 

    Google Scholar 

  • Goddéris, Y. & Donnadieu, Y. A sink-or a source-driven carbon cycle on the geological timescale? Relative significance of palaeogeography versus strong Earth degassing charge within the Phanerozoic climatic evolution. Geol. Magazine. 156, 355–365 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Farnsworth, A. et al. Local weather sensitivity on geological timescales managed by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).

    ADS 
    Article 

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, Ok. Traits, rhythms, and aberrations in world local weather 65 Ma to current. Science 292, 686–693 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bluth, G. J. S. & Kump, L. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).

    ADS 
    Article 

    Google Scholar 

  • Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Caves Rugenstein, J. Ok., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling pushed by land floor reactivity slightly than elevated weathering fluxes. Nature 571, 99–102 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Misra, S. & Froelich, P. N. Lithium isotope historical past of Cenozoic seawater: modifications in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bernhardt, A. et al. 10Be/9Be ratios reveal marine authigenic clay formation. Geophys. Res. Lett. 47, e2019GL086061 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Li, S., Goldstein, S. L. & Raymo, M. E. Neogene continental denudation and the beryllium conundrum. Proc. Natl Acad. Sci. USA 118, e2026456118 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dunlea, A. G., Murray, R. W., Ramos, D. P. S. & Higgins, J. A. Cenozoic world cooling and elevated seawater Mg/Ca through lowered reverse weathering. Nat. Commun. 8, 844 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary local weather. Nature 560, 471–475 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seton, M. et al. World continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    ADS 
    Article 

    Google Scholar 

  • Brune, S., Williams, S. E. & Müller, R. D. Potential hyperlinks between continental rifting, CO2 degassing and local weather change by way of time. Nat. Geosci. 10, 941–946 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Syracuse, E. M., van Keken, P. E. & Abers, G. A. The worldwide vary of subduction zone thermal fashions. Phys. Earth Planet. Inter. 183, 73–90 (2010). Two-dimensional thermal modelling of a world set of kinematically outlined subduction-zone segments offers insights into the sources of fluid and soften.

    ADS 
    Article 

    Google Scholar 

  • Lunt, D. J. et al. DeepMIP: mannequin intercomparison of early Eocene climatic optimum (EECO) large-scale local weather options and comparability with proxy information. Clim. Previous Talk about. 17, 203–227 (2021).

    Article 

    Google Scholar 

  • Steinthorsdottir, M. et al. The Miocene: the way forward for the previous. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2020).

    Google Scholar 

  • Penman, D. E., Rugenstein, J. Ok. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a suggestions and forcing in Earth’s local weather and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the efficiency of previous local weather mannequin projections. Geophys. Res. Lett. 47, e2019GL085378 (2020).

    ADS 
    Article 

    Google Scholar 

  • Leave a Reply