Observation of chiral state transfer without encircling an exceptional point


  • Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by distinctive factors. J. Phys. A 44, 435302 (2011).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Graefe, E.-M., Mailybaev, A. A. & Moiseyev, N. Breakdown of adiabatic switch of sunshine in waveguides within the presence of absorption. Phys. Rev. A 88, 033842 (2013).

    ADS 
    Article 

    Google Scholar 

  • Gilary, I., Mailybaev, A. A. & Moiseyev, N. Time-asymmetric quantum-state-exchange mechanism. Phys. Rev. A 88, 010102 (2013).

    ADS 
    Article 

    Google Scholar 

  • Doppler, J. et al. Dynamically encircling an distinctive level for uneven mode switching. Nature 537, 76–79 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Xu, H., Mason, D., Jiang, L. & Harris, J. G. Topological power switch in an optomechanical system with distinctive factors. Nature 537, 80–83 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yoon, J. W. et al. Time-asymmetric loop round an distinctive level over the complete optical communications band. Nature 562, 86–90 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hassan, A. U., Zhen, B., Soljačić, M., Khajavikhan, M. & Christodoulides, D. N. Dynamically encircling distinctive factors: actual evolution and polarization state conversion. Phys. Rev. Lett. 118, 093002 (2017).

    ADS 
    Article 

    Google Scholar 

  • Zhang, X.-L. & Chan, C. T. Dynamically encircling distinctive factors in a three-mode waveguide system. Commun. Phys. 2, 63 (2019).

    Article 

    Google Scholar 

  • Hassan, A. U. et al. Chiral state conversion with out encircling an distinctive level. Phys. Rev. A 96, 052129 (2017).

    ADS 
    Article 

    Google Scholar 

  • Zhong, Q., Khajavikhan, M., Christodoulides, D. N. & El-Ganainy, R. Winding round non-Hermitian singularities. Nat. Commun. 9, 4808 (2018).

    ADS 
    Article 

    Google Scholar 

  • Feilhauer, J. et al. Encircling distinctive factors as a non-Hermitian extension of fast adiabatic passage. Phys. Rev. A 102, 040201 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kato, T. Perturbation Principle for Linear Operators (Springer, 2013).

  • Heiss, W. D. Phases of wave features and degree repulsion. Eur. Phys. J. D 7, 1–4 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011).

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    CAS 
    Article 

    Google Scholar 

  • Parto, M., Liu, Y. G. N., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-Hermitian and topological photonics: optics at an distinctive level. Nanophotonics 10, 403–423 (2021).

    Article 

    Google Scholar 

  • Makris, Ok. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Klaiman, S., Günther, U. & Moiseyev, N. Visualization of department factors in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Zheng, M. C., Christodoulides, D. N., Fleischmann, R. & Kottos, T. PT optical lattices and universality in beam dynamics. Phys. Rev. A 82, 010103 (2010).

    ADS 
    Article 

    Google Scholar 

  • Milburn, T. J. et al. Basic description of quasiadiabatic dynamical phenomena close to distinctive factors. Phys. Rev. A 92, 052124 (2015).

    ADS 
    Article 

    Google Scholar 

  • Zhang, X.-L., Wang, S., Hou, B. & Chan, C. T. Dynamically encircling distinctive factors: in situ management of encircling loops and the position of the place to begin. Phys. Rev. X 8, 021066 (2018).

    CAS 

    Google Scholar 

  • Zhang, X.-L., Jiang, T. & Chan, C. T. Dynamically encircling an distinctive level in anti-parity-time symmetric techniques: uneven mode switching for symmetry-broken modes. Mild Sci. Appl. 8, 88 (2019).

    ADS 
    Article 

    Google Scholar 

  • Choi, Y., Hahn, C., Yoon, J. W., Track, S. H. & Berini, P. Extraordinarily broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps close to distinctive factors. Nat. Commun. 8, 14154 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Choi, Y., Yoon, J. W., Hong, J. Ok., Ryu, Y. & Track, S. H. Direct statement of time-asymmetric breakdown of the usual adiabaticity round an distinctive level. Commun. Phys. 3, 140 (2020).

    Article 

    Google Scholar 

  • Gao, T. et al. Commentary of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dembowski, C. et al. Experimental statement of the topological construction of outstanding factors. Phys. Rev. Lett. 86, 787 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mailybaev, A. A., Kirillov, O. N. & Seyranian, A. P. Geometric section round distinctive factors. Phys. Rev. A 72, 014104 (2005).

    ADS 
    Article 

    Google Scholar 

  • Heiss, W. D. The physics of outstanding factors. J. Phys. A 45, 444016 (2012).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Dembowski, C. et al. Encircling an distinctive level. Phys. Rev. E 69, 056216 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liu, Q., Liu, J., Zhao, D. & Wang, B. On-chip experiment for chiral mode switch with out enclosing an distinctive level. Phys. Rev. A 103, 023531 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Berry, M. V. & Uzdin, R. Sluggish non-Hermitian biking: actual options and the Stokes phenomenon. J. Phys. A 44, 435303 (2011).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Leave a Reply