Bailey, J. E. Periodic operation of chemical reactors: a assessment. Chem. Eng. Commun. 1, 111–124 (1973).
Google Scholar
Wolff, J., Papathanasiou, A. G., Kevrekidis, I. G., Rotermund, H. H. & Ertl, G. Spatiotemporal addressing of floor exercise. Science 294, 134–137 (2001).
Google Scholar
Kevrekidis, I. G., Schmidt, L. D. & Aris, R. Some frequent options of periodically compelled reacting techniques. Chem. Eng. Sci. 41, 1263–1276 (1986).
Google Scholar
Chorkendorff, I. & Niemantsverdriet, J. W. Ideas of Fashionable Catalysis and Kinetics third edn (Wiley, 2017).
Marin, G. B., Yablonsky, G. S. & Constales, D. Kinetics of Chemical Reactions: Decoding Complexity 2nd edn (Wiley, 2019).
Papathanasiou, A. G., Wolff, J., Kevrekidis, I. G., Rotermund, H. H. & Ertl, G. Some twists and turns within the path of enhancing floor exercise. Chem. Phys. Lett. 358, 407–412 (2002).
Google Scholar
Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).
Google Scholar
Calkins, W. H. & Bonifaz, C. Coal flash pyrolysis: 5. Pyrolysis in an environment of methane. Gas 63, 1716–1719 (1984).
Google Scholar
Hao, J. et al. Enhanced methane conversion to olefins and aromatics by H-donor molecules underneath nonoxidative situation. ACS Catal. 9, 9045–9050 (2019).
Google Scholar
Sakbodin, M., Wu, Y., Oh, S. C., Wachsman, E. D. & Liu, D. Hydrogen-permeable tubular membrane reactor: selling conversion and product selectivity for non-oxidative activation of methane over an Fe@SiO2 catalyst. Angew. Chem. Int. Ed. 55, 16149–16152 (2016).
Google Scholar
Šot, P. et al. Non-oxidative methane coupling over silica versus silica-supported iron(II) single websites. Chem. Eur. J. 26, 8012–8016 (2020).
Google Scholar
Wu, Y. et al. Overgrowth of lamellar silicalite-1 on MFI and BEA zeolites and its penalties on non-oxidative methane aromatization response. Microporous Mesoporous Mater. 263, 1–10 (2018).
Google Scholar
Liu, L. et al. Methane dehydroaromatization on Mo/HMCM-22 catalysts: Impact of SiO2/Al2O3 ratio of HMCM-22 zeolite helps. Catal. Lett. 108, 25–30 (2006).
Google Scholar
Zhang, Y. et al. Promotional results of In on non-oxidative methane transformation over Mo-ZSM-5. Catal. Lett. 146, 1903–1909 (2016).
Google Scholar
Aboul-Gheit, A. Okay., Awadallah, A. E., Aboul-Enein, A. A. & Mahmoud, A.-L. H. Molybdenum substitution by copper or zinc in H-ZSM-5 zeolite for catalyzing the direct conversion of pure gasoline to petrochemicals underneath non-oxidative situations. Gas 90, 3040–3046 (2011).
Google Scholar
Bajec, D., Kostyniuk, A., Pohar, A. & Likozar, B. Micro-kinetics of non-oxidative methane coupling to ethylene over Pt/CeO2 catalyst. Chem. Eng. J. 396, 125182 (2020).
Google Scholar
Xie, P. et al. Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8, 4044–4048 (2018).
Google Scholar
Xiao, Y. & Varma, A. Extremely selective nonoxidative coupling of methane over Pt-Bi bimetallic catalysts. ACS Catal. 8, 2735–2740 (2018).
Google Scholar
Butland, A. T. D. & Maddison, R. J. The particular warmth of graphite: an analysis of measurements. J. Nucl. Mater. 49, 45–56 (1973).
Google Scholar
Bao, W. et al. Versatile, excessive temperature, planar lighting with massive scale printable nanocarbon paper. Adv. Mater. 28, 4684–4691 (2016).
Google Scholar
Van Geem, Okay. M., Galvita, V. V. & Marin, G. B. Making chemical substances with electrical energy. Science 364, 734–735 (2019).
Google Scholar
Wismann, S. T. et al. Electrified methane reforming: a compact method to greener industrial hydrogen manufacturing. Science 364, 756–759 (2019).
Google Scholar
Bai, Z., Chen, H., Li, B. & Li, W. Catalytic decomposition of methane over activated carbon. J. Anal. Appl. Pyrolysis 73, 335–341 (2005).
Google Scholar
Gao, Z., Kobayashi, M., Wang, H., Onoe, Okay. & Yamaguchi, T. Methane conversion in thermal diffusion column reactor with carbon rod as pyrogen. Gas Course of. Technol. 88, 996–1001 (2007).
Google Scholar
Shields, B. J. et al. Bayesian response optimization as a device for chemical synthesis. Nature 590, 89–96 (2021).
Google Scholar
Wang, Y., Chen, T.-Y. & Vlachos, D. NEXTorch: a design and Bayesian optimization toolkit for chemical sciences and engineering. J. Chem. Inf. Mannequin. 61, 5312–5319 (2021).
Google Scholar
Frenklach, M. Response mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002).
Yablonsky, G. S., Constales, D. & Marin, G. B. Equilibrium relationships for non-equilibrium chemical dependencies. Chem. Eng. Sci. 66, 111–114 (2011).
Google Scholar
Silva, G. D. Thriller of 1-vinylpropargyl formation from acetylene addition to the propargyl radical: an open-and-shut case. J. Phys. Chem. A 121, 2086–2095 (2017).
Google Scholar
Mansurov, Z. A. Soot formation in combustion processes. Combust. Explos. Shock Waves 41, 727–744 (2005).
Google Scholar
Saadatjou, N., Jafari, A. & Sahebdelfar, S. Ruthenium nanocatalysts for ammonia synthesis: a assessment. Chem. Eng. Commun. 202, 420–448 (2015).
Google Scholar
Qin, R. et al. Alkali ions safe hydrides for catalytic hydrogenation. Nat. Catal. 3, 703–709 (2020).
Google Scholar
Dahl, S., Sehested, J., Jacobsen, C. J. H., Törnqvist, E. & Chorkendorff, I. Floor science based mostly microkinetic evaluation of ammonia synthesis over ruthenium catalysts. J. Catal. 192, 391–399 (2000).
Google Scholar
Bowker, M., Parker, I. B. & Waugh, Okay. C. Extrapolation of the kinetics of mannequin ammonia synthesis catalysts to industrially related temperatures and pressures. Appl. Catal. 14, 101–118 (1985).
Google Scholar
Wu, L., Hu, S., Yu, W., Shen, S. & Li, T. Stabilizing mechanism of single-atom catalysts on a faulty carbon floor. NPJ Comput. Mater. 6, 1–8 (2020).
Google Scholar
Özçelik, V. O., Gurel, H. H. & Ciraci, S. Self-healing of emptiness defects in single-layer graphene and silicene. Phys. Rev. B 88, 045440 (2013).
Google Scholar
Ye, T.-N. et al. Emptiness-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).
Google Scholar
Gong, Y. et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat. Catal. 1, 178–185 (2018).
Google Scholar
Kitano, M. et al. Ammonia synthesis utilizing a steady electride as an electron donor and reversible hydrogen retailer. Nat. Chem. 4, 934–940 (2012).
Google Scholar
Shi, M.-M. et al. Au sub-nanoclusters on TiO2 towards extremely environment friendly and selective electrocatalyst for N2 conversion to NH3 at ambient situations. Adv. Mater. 29, 1606550 (2017).
Google Scholar
Dong, Q. et al. Lively studying for programmable heating and quenching. Code Ocean https://doi.org/10.24433/CO.1790371.v1 (2021).