Theis, T. N. & Wong, H. P. The top of Moore’s regulation: a brand new starting for info know-how. Comput. Sci. Eng. 19, 41–50 (2017).
Google Scholar
Akinwande, D. et al. Graphene and two-dimensional supplies for silicon know-how. Nature 573, 507–518 (2019).
Google Scholar
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Google Scholar
Wong, H. & Iwai, H. On the scaling of subnanometer EOT gate dielectrics for final nano CMOS know-how. Microelectron. Eng. 138, 57–76 (2015).
Google Scholar
Badaroglu, M. et al. Extra Moore. In Worldwide Roadmap for Units and Techniques 2020 12 (IEEE, 2020); https://irds.ieee.org/photographs/information/pdf/2020/2020IRDS_MM.pdf
Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the hole to bridge. Nat. Commun. 11, 3385 (2020).
Google Scholar
Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D supplies. Chem. Mater. 29, 3809–3826 (2017).
Google Scholar
Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional digital units. Nat. Electron. 2, 563–571 (2019).
Google Scholar
Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).
Google Scholar
Park, J. H. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 10, 6888–6896 (2016).
Google Scholar
Knobloch, T. et al. The efficiency limits of hexagonal boron nitride as an insulator for scaled CMOS units based mostly on two-dimensional supplies. Nat. Electron. 4, 98–108 (2021).
Google Scholar
Lee, G.-H. et al. Versatile and clear MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).
Google Scholar
Vu, Q. A. et al. Close to-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 5, 031001 (2018).
Google Scholar
Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).
Google Scholar
Neville, R. C., Hoeneisen, B. & Mead, C. A. Permittivity of strontium titanate. J. Appl. Phys. 43, 2124–2131 (1972).
Google Scholar
McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the primary 5 monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).
Google Scholar
Reiner, J. W. et al. Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).
Google Scholar
Couto, N. J. G., Sacépé, B. & Morpurgo, A. F. Transport via graphene on SrTiO3. Phys. Rev. Lett. 107, 225501 (2011).
Google Scholar
Veyrat, L. et al. Helical quantum Corridor section in graphene on SrTiO3. Science 367, 781–786 (2020).
Google Scholar
Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).
Google Scholar
Caviglia, A. D. et al. Electrical subject management of the LaAlO3/SrTiO3 interface floor state. Nature 456, 624–627 (2008).
Google Scholar
Lu, D. et al. Synthesis of freestanding single-crystal perovskite movies and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
Google Scholar
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).
Google Scholar
Stengel, M. & Spaldin, N. A. Origin of the dielectric lifeless layer in nanoscale capacitors. Nature 443, 679–682 (2006).
Google Scholar
Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y. & Ryu, J. Excessive-performance dielectric ceramic movies for power storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018).
Google Scholar
McPherson, J., Kim, J., Shanware, A., Mogul, H. & Rodriguez, J. Proposed common relationship between dielectric breakdown and dielectric fixed. In 2002 IEEE Worldwide Electron Units Assembly (IEDM) 633–636 (IEEE, 2002).
Robertson, J. Excessive dielectric fixed gate oxides for steel oxide Si transistors. Rep. Prog. Phys. 69, 327–396 (2005).
Google Scholar
Wen, C. et al. Dielectric properties of ultrathin CaF2 ionic crystals. Adv. Mater. 32, 2002525 (2020).
Google Scholar
Sokolov, N. S. et al. Low-leakage MIS constructions with 1.5-6 nm CaF2 insulating layer on Si(111). Microelectron. Eng. 84, 2247–2250 (2007).
Google Scholar
Hattori, Y., Taniguchi, T., Watanabe, Ok. & Nagashio, Ok. Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano 9, 916–921 (2015).
Google Scholar
Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for prime materials efficiency. Nat. Commun. 6, 8662 (2015).
Google Scholar
Baumert, B. A. et al. Characterization of sputtered barium strontium titanate and strontium titanate-thin movies. J. Appl. Phys. 82, 2558–2566 (1997).
Google Scholar
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration earlier than and past two-dimensional supplies. Nature 567, 323–333 (2019).
Google Scholar
Smets, Q. et al. Sources of variability in scaled MoS2 FETs. In 2020 IEEE Worldwide Electron Units Assembly (IEDM) 3.1.1–3.1.4 (IEEE, 2020).
Dong, G. et al. Tremendous-elastic ferroelectric single-crystal membrane with steady electrical dipole rotation. Science 366, 475–479 (2019).
Google Scholar
Yu, L. et al. Enhancement-mode single-layer CVD MoS2 FET know-how for digital electronics. In 2015 IEEE Worldwide Electron Units Assembly (IEDM) 32.3.1–32.3.4 (IEEE, 2015).
Smets, Q. et al. Extremely-scaled MOCVD MoS2 MOSFETs with 42nm contact pitch and 250µA/µm drain present. In 2019 IEEE Worldwide Electron Units Assembly (IEDM) 23.2.1–23.2.4 (IEEE, 2019).
Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).
Google Scholar
Qian, Q. et al. Improved gate dielectric deposition and enhanced electrical stability for single-layer MoS2 MOSFET with an AlN interfacial layer. Sci Rep. 6, 27676 (2016).
Google Scholar
Ashokbhai Patel, Ok., Grady, R. W., Smithe, Ok. Ok. H., Pop, E. & Sordan, R. Extremely-scaled MoS2 transistors and circuits fabricated with out nanolithography. 2D Mater. 7, 015018 (2019).
Google Scholar
English, C. D., Smithe, Ok. Ok. H., Xu, R. L. & Pop, E. Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm high gates. In 2016 IEEE Worldwide Electron Units Assembly (IEDM) 5.6.1–5.6.4 (IEEE, 2016).
Xu, Ok. et al. Sub-10 nm nanopattern structure for 2D materials field-effect transistors. Nano Lett. 17, 1065–1070 (2017).
Google Scholar
Nourbakhsh, A. et al. 15-nm channel size MoS2 FETs with single- and double-gate constructions. In 2015 Symposium on VLSI Expertise (VLSI Expertise) T28–T29 (IEEE, 2015).
Knobloch, T. et al. A bodily mannequin for the hysteresis in MoS2 transistors. IEEE J. Electron System. Soc. 6, 972–978 (2018).
Google Scholar
Henrich, V. E., Dresselhaus, G. & Zeiger, H. J. Floor defects and the digital construction of SrTiO3 surfaces. Phys. Rev. B 17, 4908–4921 (1978).
Google Scholar
van Benthem, Ok., Elsässer, C. & French, R. H. Bulk digital construction of SrTiO3: experiment and principle. J. Appl. Phys. 90, 6156–6164 (2001).
Google Scholar
Wunderlich, W., Ohta, H. & Koumoto, Ok. Enhanced efficient mass in doped SrTiO3 and associated perovskites. Physica B 404, 2202–2212 (2009).
Google Scholar
Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Clean, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces via formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).
Google Scholar
Vasquez, R. P. SrTiO3 by XPS. Surf. Sci. Spectra 1, 129–135 (1992).
Google Scholar
Shi, Y. et al. Selective ornament of Au nanoparticles on monolayer MoS2 single crystals. Sci Rep. 3, 1839 (2013).
Google Scholar
Lewis, J. Materials problem for versatile natural units. Mater. At present 9, 38–45 (2006).
Google Scholar