Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).
Google Scholar
Neeleman, M. et al. The kinematics of z ≳ 6 quasar host galaxies. Astrophys. J. 911, 141 (2021).
Google Scholar
Volonteri, M. The formation and evolution of large black holes. Science 337, 544–547 (2012).
Google Scholar
Van der Vlugt, D. & Costa, T. How AGN suggestions drives the scale development of the primary quasars. Mon. Not. R. Astron. Soc. 490, 4918–4934 (2019).
Google Scholar
Hickox, R. C. & Alexander, D. M. Obscured lively galactic nuclei. Annu. Rev. Astron. Astrophys. 56, 625 (2018).
Google Scholar
Weymann, R. J., Morris, S. L., Foltz, C. B. & Hewett, P. C. Comparisons of the emission-line and continuum properties of broad absorption line and regular quasi-stellar objects. Astrophys. J. 373, 23–53 (1991).
Google Scholar
Gibson, R. R. et al. A catalog of broad absorption line quasars in Sloan Digital Sky Survey Knowledge Launch 5. Astrophys. J. 692, 758–777 (2009).
Google Scholar
Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey Knowledge Launch 7. Astrophys. J. Suppl. Ser. 194, 45 (2011).
Google Scholar
Cameron, E. On the estimation of confidence intervals for binomial inhabitants proportions in astronomy: the simplicity and superiority of the Bayesian strategy. Publ. Astron. Soc. Aust. 28, 128–139 (2011).
Google Scholar
Shen, Y. et al. Gemini GNIRS near-infrared spectroscopy of fifty quasars at z ≳ 5.7. Astrophys. J. 873, 35 (2019).
Google Scholar
Schindler, J.-T. et al. The X-shooter/ALMA pattern of quasars within the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. Astrophys. J. 905, 51 (2020).
Google Scholar
Yang, J. et al. Probing early super-massive black gap development and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3 < z ≤ 7.64. Astrophys. J. 923, 262 (2021).
Google Scholar
Allen, J. T., Hewett, P. C., Maddox, N., Richards, G. T. & Belokurov, V. A powerful redshift dependence of the broad absorption line quasar fraction. Mon. Not. R. Astron. Soc. 410, 860–884 (2011).
Google Scholar
Trump, J. R. et al. A catalog of broad absorption line quasars from the Sloan Digital Sky Survey Third Knowledge Launch. Astrophys. J. Suppl. Ser. 165, 1–18 (2006).
Google Scholar
Dai, X., Shankar, F. & Sivakoff, G. R. 2MASS reveals a big intrinsic fraction of BALQSOs. Astrophys. J. 672, 108–114 (2008).
Google Scholar
Bruni, G. et al. The WISSH quasars undertaking. VI. Fraction and properties of BAL quasars within the hyper-luminosity regime. Astron. Astrophys. 630, A111 (2019).
Google Scholar
Wang, F. et al. The invention of a luminous broad absorption line quasar at a redshift of seven.02. Astrophys. J. Lett. 869, L9 (2018).
Google Scholar
Rodríguez Hidalgo, P. et al. Survey of extraordinarily high-velocity outflows in Sloan Digital Sky Survey quasars. Astrophys. J. 896, 151 (2021).
Google Scholar
Ishibashi, W., Banerji, M. & Fabian, A. C. AGN radiative suggestions in dusty quasar populations. Mon. Not. R. Astron. Soc. 469, 1496–1501 (2017).
Google Scholar
Costa, T., Rosdahl, J., Sijacki, D. & Haehnelt, M. G. Driving fuel shells with radiation stress on mud in radiation-hydrodynamic simulations. Mon. Not. R. Astron. Soc. 473, 4197–4219 (2018).
Google Scholar
Dunn, J. P., Crenshaw, D. M., Kraemer, S. B. & Trippe, M. L. Bodily situations within the ultraviolet absorbers of IRAS F22456-5125. Astrophys. J. 713, 900–905 (2010).
Google Scholar
Moe, M., Arav, N., Bautista, M. A. & Korista, Ok. T. Quasar outflow contribution to AGN suggestions: observations of QSO SDSS J0838+2955. Astrophys. J. 706, 525–534 (2009).
Google Scholar
Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).
Google Scholar
Elvis, M. A construction for quasar. Astrophys. J. 545, 63–76 (2000).
Google Scholar
Decarli, R. et al. An ALMA [C ii] survey of 27 quasars at z > 5.94. Astrophys. J. 854, 97 (2018).
Google Scholar
Eilers, A.-C. et al. Detecting and characterizing younger quasars. I. Systemic redshifts and proximity zone measurements. Astrophys. J. 900, 37 (2020).
Google Scholar
Costa, T., Sijacki, D., Trenti, M. & Haehnelt, M. G. The setting of shiny QSOs at z ~ 6: star-forming galaxies and X-ray emission. Mon. Not. R. Astron. Soc. 439, 2146–2174 (2014).
Google Scholar
Wright, E. L. et al. The Vast-field Infrared Survey Explorer (WISE): mission description and preliminary on-orbit efficiency. Astron. J. 140, 1868–1881 (2010).
Google Scholar
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).
Google Scholar
Bañados, E. et al. The Pan-STARRS1 Distant z > 5.6 Quasar Survey: greater than 100 quasars inside the first Gyr of the Universe. Astrophys. J. Suppl. Ser. 227, 11 (2016).
Google Scholar
Wang, F. et al. Exploring reionization-era quasars. III. Discovery of 16 quasars at 6.4 ≲ z ≲ 6.9 with DESI Legacy Imaging Surveys and the UKIRT Hemisphere Survey and quasar luminosity operate at z ∼ 6.7. Astrophys. J. Lett. 884, 30 (2019).
Google Scholar
López, S. et al. XQ-100: a legacy survey of 100 3.5 ≲ z ≲ 4.5 quasars noticed with VLT/X-shooter. Astron. Astrophys. 594, A91 (2016).
Google Scholar
Modigliani, A. et al. In Soc. Photograph-Decide. Instr. Eng. Conf. Ser. Observatory Operations: Methods, Processes, and Methods III Vol. 7737 (eds Silva, D. R. et al.) 773728 (SPIE, 2010).
Cupani, G. et al. In Soc. Photograph-Decide. Instr. Eng. Conf. Collection Vol. 11452, 114521U (SPIE, 2020).
Ross, N. P. & Cross, N. J. G. The close to and mid-infrared photometric properties of recognized redshift z ≳ 5 quasars. Mon. Not. R. Astron. Soc. 494, 789–803 (2020).
Google Scholar
Jiang, L. et al. Discovery of eight z ~ 6 quasars within the Sloan Digital Sky Survey overlap areas. Astron. J. 149, 188 (2015).
Google Scholar
Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).
Google Scholar
Cross, N. J. G. et al. The VISTA Science Archive. Astron. Astrophys. 548, A119 (2012).
Google Scholar
Mazzucchelli, C. et al. Bodily properties of 15 quasars at z ≳ 6.5. Astrophys. J. 849, 91 (2017).
Google Scholar
Bañados, E. et al. A metal-poor damped Lyα system at redshift 6.4. Astrophys. J. 885, 59 (2019).
Google Scholar
Edge, A. et al. The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: bridging the hole between high and low redshift. Messenger 154, 32–34 (2013).
Google Scholar
Persson, S. E. et al. FourStar: the near-infrared imager for the 6.5 m Baade Telescope at Las Campanas Observatory. Publ. Astron. Soc. Pac. 125, 654–682 (2013).
Google Scholar
Moorwood, A., Cuby, J. G. & Lidman, C. SOFI sees first gentle on the NTT. Messenger 91, 9–13 (1998).
Google Scholar
Reichard, T. A. et al. Continuum and emission-line properties of broad absorption line quasars. Astron. J. 126, 2594–2607 (2003).
Google Scholar
Knigge, C., Scaringi, S., Goad, M. R. & Cottis, C. E. The intrinsic fraction of broad-absorption line quasars. Mon. Not. R. Astron. Soc. 386, 1426–1435 (2008).
Google Scholar
Maddox, N., Hewett, P. C., Warren, S. J. & Croom, S. M. Luminous Ok-band chosen quasars from UKIDSS. Mon. Not. R. Astron. Soc. 386, 1605–1624 (2008).
Google Scholar
Giustini, M., Cappi, M. & Vignali, C. On the absorption of X-ray shiny broad absorption line quasars. Astron. Astrophys. 491, 425–434 (2008).
Google Scholar
White, R. L. et al. An I-band-selected pattern of radio-emitting quasars: proof for a big inhabitants of pink quasars. Astron. J. 126, 706–722 (2003).
Google Scholar
Becker, R. H. et al. Properties of radio-selected broad absorption line quasars from the primary shiny quasar survey. Astrophys. J. 538, 72–82 (2000).
Google Scholar
Chehade, B. et al. Two extra, shiny, z > 6 quasars from VST ATLAS and WISE. Mon. Not. R. Astron. Soc. 478, 1649–1659 (2018).
Google Scholar
Reed, S. L. et al. Eight new luminous z ≥ 6 quasars found by way of SED mannequin becoming of VISTA, WISE and Darkish Vitality Survey Yr 1 observations. Mon. Not. R. Astron. Soc. 468, 4702–4718 (2017).
Google Scholar
Pâris, I. et al. The Sloan Digital Sky Survey Quasar Catalog: fourteenth knowledge launch. Astron. Astrophys. 613, A51 (2018).
Google Scholar
Dunn, J. P. et al. BAL outflow contribution to AGN suggestions: frequency of S IV outflows within the SDSS. Astrophys. J. 750, 143 (2012).
Google Scholar
Connor, T. et al. X-ray observations of a [C II]-bright, z = 6.59 quasar/companion system. Astrophys. J. 900, 189 (2020).
Google Scholar
Mann, H. B. & Whitney, D. R. On a take a look at of whether or not one in every of two random variables is stochastically bigger than the opposite. Ann. Math. Stat. 18, 50–60 (1947).
Google Scholar
Vestergaard, M. & Wilkes, B. An empirical ultraviolet template for iron emission in quasars as derived from I Zwicky 1. Astrophys. J. Supp. 134, 1–33 (2001).
Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).
Google Scholar
Runnoe, J. C., Brotherton, M. S. & Shang, Z. Erratum: Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 427, 1800 (2012).
Google Scholar
Vestergaard, M. & Osmer, P. S. Mass features of the lively black holes in distant quasars from the massive shiny quasar survey, the brilliant quasar survey, and the color-selected pattern of the SDSS fall equatorial stripe. Astrophys. J. 699, 800–816 (2009).
Google Scholar
Vestergaard, M. & Peterson, B. M. Figuring out central black gap plenty in distant lively galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).
Google Scholar
Coatman, L. et al. Correcting C IV-based virial black gap plenty. Mon. Not. R. Astron. Soc. 465, 2120–2142 (2017).
Google Scholar