Transitioning organizations to post-quantum cryptography


  • Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum laptop. In Proc. thirty fifth Annual Symposium on Foundations of Laptop Science 124–134 (Soc. Industr. Appl. Math., 1994). Shor’s quantum algorithm demonstrated how you can factorize massive integers in polynomial time, which is an exponential speed-up over the most effective classical algorithms.

  • Bernstein, D. J. & Lange, T. Publish-quantum cryptography. Nature 549, 188–194 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gidney, C. & Ekerå, M. issue 2048 bit RSA integers in 8 hours utilizing 20 million noisy qubits. Quantum 5, 433 (2021). Gidney and Ekerå describe the sources required to implement Shor’s algorithm to interrupt in the present day’s customary cryptography, assuming noisy qubits.

    Article 

    Google Scholar 

  • Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Proceedings of the IEEE Worldwide Convention on Computer systems, Programs, and Sign Processing 175–179 (1984).

  • Alagic, G. et al. Computational safety of quantum encryption. In Worldwide Convention on Data Theoretic Safety 47–71 (Springer, 2016).

  • Barnum, H., Crepeau, C., Gottesman, D., Smith, A. & Tapp, A. Authentication of quantum messages. In Proc. forty third Annual IEEE Symposium on Foundations of Laptop Science 449–458 (IEEE, 2002).

  • Paquin, C., Stebila, D. & Tamvada, G. Benchmarking post-quantum cryptography in TLS. In Worldwide Convention on Publish-Quantum Cryptography 72–91 (Springer, 2020).

  • Rose, S., Borchert, O., Mitchell, S. & Connelly, S. Zero Belief Structure (NIST, 2020); https://csrc.nist.gov/publications/element/sp/800-207/closing

  • Kearney, J. J. & Perez-Delgado, C. A. Vulnerability of blockchain applied sciences to quantum assaults. Array 10, 100065 (2021).

    Article 

    Google Scholar 

  • Lemke, Ok., Paar, C. & Wolf, M. Embedded Safety in Vehicles (Springer, 2006).

  • Anderson, R. & Fuloria, S. Safety economics and significant nationwide infrastructure. In Economics of Data Safety and Privateness 55–66 (Springer, 2010).

  • Gura, N., Patel, A., Wander, A., Eberle, H. & Shantz, S. C. Evaluating elliptic curve cryptography and RSA on 8-bit CPUs. In Worldwide Workshop on Cryptographic {Hardware} and Embedded Programs 119–132 (Springer, 2004).

  • Rivest, R. L., Shamir, A. & Adleman, L. A technique for acquiring digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978).

    MathSciNet 
    Article 

    Google Scholar 

  • Miller, V. S. Use of elliptic curves in cryptography. In Convention on the Principle and Software of Cryptographic Methods 417–426 (Springer, 1985).

  • Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987).

    MathSciNet 
    Article 

    Google Scholar 

  • Chang, S. et al. Third-Spherical Report of the SHA-3 Cryptographic Hash Algorithm Competitors NISTIR 7896 (NIST, 2012).

  • Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J. & Mohaisen, A. XMSS: eXtended Merkle signature scheme. RFC 8391 (2018); https://datatracker.ietf.org/doc/html/rfc8391

  • McGrew, D., Curcio, M. & Fluhrer, S. Leighton-Micali hash-based signatures. RFC 8554 (2019); https://datatracker.ietf.org/doc/html/rfc8554

  • Cooper, D. A. et al. Advice for Stateful Hash-based Signature Schemes NIST Particular Publication 800-208 (NIST, 2020); https://csrc.nist.gov/publications/element/sp/800-208/closing

  • Alagic, G. et al. Standing Report on the Second Spherical of the NIST Publish-quantum Cryptography Standardization Course of (US Division of Commerce, NIST, 2020); https://csrc.nist.gov/publications/element/nistir/8309/closingThis report describes NIST’s findings after analysis of the second spherical, and explains the motivation for choosing the seven finalist schemes in addition to the eight different observe schemes for analysis within the third spherical.

  • Gheorghiu, V. & Mosca, M. Benchmarking the quantum cryptanalysis of symmetric, public-key and hash-based cryptographic schemes. Preprint at https://arxiv.org/abs/1902.02332 (2019).

  • Bernstein, D. J. et al. SPHINCS: sensible stateless hash-based signatures. In Proc. EUROCRYPT Vol. 9056 368–397 (Springer, 2015).

  • Nechvatal, J. et al. Report on the event of the superior encryption customary (AES). J. Res. Natl Inst. Stand. Technol. 106, 511–577 (2001).

    Article 

    Google Scholar 

  • Chen, L. et al. Report on Publish-quantum Cryptography (NIST, 2016); https://csrc.nist.gov/publications/element/nistir/8105/closing

  • McEliece, R. J. A public-key cryptosystem based mostly on algebraic coding principle. Jet Propulsion Laboratory, Pasadena. DSN Progress Experiences 4244, 114–116 (1978).

    ADS 

    Google Scholar 

  • Dierks, T. & Allen, C. The TLS protocol model 1.0. RFC 2246 (1999); https://www.ietf.org/rfc/rfc2246.txt

  • Rescorla, E. & Dierks, T. The transport layer safety (TLS) protocol model 1.3. RFC 8446 (2018); https://datatracker.ietf.org/doc/html/rfc8446

  • Rescorla, E. & Schiffman, A. The safe hypertext switch protocol. RFC 2660 (1999); https://datatracker.ietf.org/doc/html/rfc2660

  • Holz, R., Amann, J., Mehani, O., Wachs, M. & Kaafar, M. A. TLS within the wild: an Web-wide evaluation of TLS-based protocols for digital communication. Proceedings of the Community and Distributed System Safety Symposium (NDSS) (2016).

  • Steblia, D., Fluhrer, S. & Gueron, S. Hybrid Key Trade in TLS 1.3 (IETF, 2020); https://instruments.ietf.org/id/draft-stebila-tls-hybrid-design-03.html

  • Tjhai, C. et al. A number of Key Exchanges in IKEv2 (IETF, 2021); https://www.ietf.org/archive/id/draft-ietf-ipsecme-ikev2-multiple-ke-03.txt

  • CYBER; Quantum-Secure Hybrid Key Exchanges ETSI TS 103 744, (ETSI, 2020); https://www.etsi.org/ship/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf

  • Quantum Secure Cryptography and Safety; An Introduction, Advantages, Enablers and Challenges White Paper No. 8 (ETSI, 2015); https://www.etsi.org/applied sciences/quantum-safe-cryptography

  • Barker, W., Souppaya, M. & Newhouse, W. Migration to Publish-Quantum Cryptography (NIST & CSRC, 2021); https://csrc.nist.gov/publications/element/white-paper/2021/08/04/migration-to-post-quantum-cryptography/closing

  • Lu, X. et al. LAC: sensible ring-LWE based mostly public-key encryption with byte-level modulus. IACR Cryptol. ePrint Arch. 2018, 1009 (2018).

    Google Scholar 

  • Announcement of nation-wide cryptographic algorithm design competitors end result. Chinese language Affiliation for Cryptology Analysis https://www.cacrnet.org.cn/web site/content material/854.html (2021).

  • Alagic, G. et al. Standing Report on the First Spherical of the NIST Publish-Quantum Cryptography Standardization Course of (NIST, 2019); https://www.nist.gov/publications/status-report-first-round-nist-post-quantum-cryptography-standardization-process

  • Ott, D. et al. Figuring out analysis challenges in put up quantum cryptography migration and cryptographic agility. Preprint at https://arxiv.org/abs/1909.07353 (2019).

  • Bindel, N., Brendel, J., Fischlin, M., Goncalves, B. & Stebila, D. Hybrid key encapsulation mechanisms and authenticated key change. In Worldwide Convention on Publish-Quantum Cryptography 206–226 (Springer, 2019).

  • Crockett, E., Paquin, C. & Stebila, D. Prototyping post-quantum and hybrid key change and authentication in TLS and SSH. IACR Cryptol. ePrint Arch. 2019, 858 (2019). Implementations of NIST spherical two PQC algorithms in TLS, offering insightful knowledge on which algorithms are more likely to be performant sufficient for widespread use and which can endure extreme efficiency points.

    Google Scholar 

  • Ounsworth, M. & Pala, M. Composite Signatures For Use In Web PKI (IETF, 2021); https://www.ietf.org/archive/id/draft-ounsworth-pq-composite-sigs-05.txt

  • Barker, E., Chen, L. & Davis, R. Advice for Key-Derivation Strategies in Key-Institution Schemes (NIST, 2020); https://www.nist.gov/publications/recommendation-key-derivation-methods-key-establishment-schemes

  • Peikert, C. A decade of lattice cryptography. Discovered. Traits Theor. Comput. Sci. 10, 283–424 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • Bernstein, D. J., Buchmann, J. & Dahmen, E. Publish-Quantum Cryptography (Springer, 2009).

  • Stebila, D. & Mosca, M. Publish-quantum key change for the web and the open quantum protected venture. In Worldwide Convention on Chosen Areas in Cryptography 14–37 (Springer, 2016).

  • Langley, A. BoringSSL. GitHub https://github.com/google/boringssl (2020).

  • Duong, T. Tink. GitHub https://github.com/google/tink (2020).

  • Bernstein, D. J. & Lange, T. SUPERCOP: system for unified efficiency analysis associated to cryptographic operations and primitives (VAMPIRE Lab, 2018); https://bench.cr.yp.to/supercop.html

  • Mosca, M. & Piani, M. Quantum Risk Timeline (International Threat Institute, 2021); https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/

  • Memorandum on Bettering the Cybersecurity of Nationwide Safety, Division of Protection, and Intelligence Group Programs. The White Home https://www.whitehouse.gov/briefing-room/presidential-actions/2022/01/19/memorandum-on-improving-the-cybersecurity-of-national-security-department-of-defense-and-intelligence-community-systems/ (2022).

  • Leave a Reply