Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).
Google Scholar
Orgel, L. E. Evolution of the genetic equipment. J. Mol. Biol. 38, 381–393 (1968).
Google Scholar
Crick, F. H. C., Brenner, S., Klug, A. & Pieczenik, G. A hypothesis on the origin of protein synthesis. Orig. Life Evol. Biosph. 7, 389–397 (1976).
Google Scholar
Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).
Google Scholar
Bowman, J. C., Hud, N. V. & Williams, L. D. The ribosome problem to the RNA world. J. Mol. Evol. 80, 143–161 (2015).
Google Scholar
Decatur, W. A. & Fournier, M. J. rRNA modifications and ribosome operate. Developments Biochem. Sci 27, 344–351 (2002).
Google Scholar
Carell, T. et al. Construction and performance of noncanonical nucleobases. Angew. Chem. Int. Ed. Engl. 51, 7110–7131 (2012).
Google Scholar
Wong, J. T.-F. Origin of genetically encoded protein synthesis: a mannequin based mostly on choice for RNA peptidation. Orig. Life Evol. Biosph. 21, 165–176 (1991).
Google Scholar
Di Giulio, M. Reflections on the origin of the genetic code: a speculation. J. Theor. Biol. 191, 191–196 (1998).
Google Scholar
Rios, A. C. & Tor, Y. On the origin of the canonical nucleobases: an evaluation of choice pressures throughout chemical and early organic evolution. Isr. J. Chem. 53, 469–483 (2013).
Google Scholar
Grosjean, H. & Westhof, E. An built-in, structure- and energy-based view of the genetic code. Nucleic Acids Res. 44, 8020–8040 (2016).
Google Scholar
Beenstock, J. & Sicheri, F. The structural and useful workings of KEOPS. Nucleic Acids Res. 49, 10818–10834 (2021).
Google Scholar
Di Giulio, M. On the RNA world: proof in favor of an early ribonucleopeptide world. J. Mol. Evol. 45, 571–578 (1997).
Google Scholar
Ramakrishnan, V. Ribosome construction and the mechanism of translation. Cell 108, 557–572 (2002).
Google Scholar
Fox, G. E. Origin and evolution of the ribosome. Chilly Spring Harb. Perspect. Biol. 2, a003483 (2010).
Google Scholar
Bowman, J. C., Petrov, A. S., Frenkel-Pinter, M., Penev, P. I. & Williams, L. D. Root of the tree: the importance, evolution, and origins of the ribosome. Chem. Rev. 120, 4848–4878 (2020).
Google Scholar
Eigen, M. & Schuster, P. A precept of pure self-organization. Naturwissenschaften 64, 541–565 (1977).
Google Scholar
Szathmáry, E. Coding coenzyme handles: a speculation for the origin of the genetic code. Proc. Natl Acad. Sci. USA 90, 9916–9920 (1993).
Google Scholar
Noller, H. F. RNA construction: studying the ribosome. Science 309, 1508–1514 (2005).
Google Scholar
Steitz, T. A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9, 242–253 (2008).
Google Scholar
Koonin, E. V. Comparative genomics, minimal gene-sets and the final common frequent ancestor. Nat. Rev. Microbiol. 1, 127–136 (2003).
Google Scholar
Woese, C. The common ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).
Google Scholar
Becerra, A., Delaye, L., Islas, S. & Lazcano, A. The very early phases of organic evolution and the character of the final frequent ancestor of the three main cell domains. Annu. Rev. Ecol. Evol. Syst. 38, 361–379 (2007).
Google Scholar
Kuhn, H. Self-organization of molecular techniques and evolution of the genetic equipment. Angew. Chem. Int. Ed. Engl. 11, 798–820 (1972).
Google Scholar
Kuhn, H. & Waser, J. Molecular self-organization and the origin of life. Angew. Chem. Int. Ed. Engl. 20, 500–520 (1981).
Google Scholar
Tamura, Ok. & Schimmel, P. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system. Proc. Natl Acad. Sci. USA 98, 1393–1397 (2001).
Google Scholar
Tamura, Ok. & Schimmel, P. Peptide synthesis with a template-like RNA information and aminoacyl phosphate adaptors. Proc. Natl Acad. Sci. USA 100, 8666–8669 (2003).
Google Scholar
Turk, R. M., Chumachenko, N. V. & Yarus, M. A number of translational merchandise from a five-nucleotide ribozyme. Proc. Natl Acad. Sci. USA 107, 4585–4589 (2010).
Google Scholar
Jash, B., Tremmel, P., Jovanovic, D. & Richert, C. Single nucleotide translation with out ribosomes. Nat. Chem. 13, 751–757 (2021).
Google Scholar
Forsythe, J. G. et al. Ester-mediated amide bond formation pushed by moist–dry cycles: a attainable path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. Engl. 54, 9871–9875 (2015).
Google Scholar
Becker, S. et al. Moist-dry cycles allow the parallel origin of canonical and non-canonical nucleosides by steady synthesis. Nat. Commun. 9, 163 (2018).
Google Scholar
Tetzlaff, C. N. & Richert, C. Synthesis and hydrolytic stability of 5′-aminoacylated oligouridylic acids. Tetrahedron Lett. 42, 5681–5684 (2001).
Google Scholar
Schweizer, M. P., McGrath, Ok. & Baczynskyj, L. The isolation and characterization of N-[9-(β–d-ribofuranosyl)-purin-6-ylcarbamoyl]glycine from yeast switch RNA. Biochem. Biophys. Res. Commun. 40, 1046–1052 (1970).
Google Scholar
Perrochia, L. et al. In vitro biosynthesis of a common t6A tRNA modification in Archaea and Eukarya. Nucleic Acids Res. 41, 1953–1964 (2012).
Google Scholar
Kimura-Harada, F., Von Minden, D. L., McCloskey, J. A. & Nishimura, S. N-[(9-β–d-Ribofuranosylpurin-6-yl)-N-methylcarbamoyl]threonine, a modified nucleoside remoted from Escherichia coli threonine switch ribonucleic acid. Biochemistry 11, 3910–3915 (1972).
Google Scholar
Robertson, M. & Miller, S. Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268, 702–705 (1995).
Google Scholar
Murphy, F. V., Ramakrishnan, V., Malkiewicz, A. & Agris, P. F. The position of modifications in codon discrimination by tRNALysUUU. Nat. Struct. Mol. Biol. 11, 1186–1191 (2004).
Google Scholar
Kitamura, A. et al. Characterization and construction of the Aquifex aeolicus protein DUF752: a bacterial tRNA-methyltransferase (MnmC2) functioning with out the normally fused oxidase area (MnmC1). J. Biol. Chem. 287, 43950–43960 (2012).
Google Scholar
Hutchby, M. et al. Hindered ureas as masked isocyanates: facile carbamoylation of nucleophiles beneath impartial situations. Angew. Chem. Int. Ed. Engl. 48, 8721–8724 (2009).
Google Scholar
Ohkubo, A. et al. New thermolytic carbamoyl teams for the safety of nucleobases. Org. Biomol. Chem. 7, 687–694 (2009).
Google Scholar
Nainytė, M. et al. Amino acid modified RNA bases as constructing blocks of an early Earth RNA-peptide world. Chem. Eur. J. 26, 14856–14860 (2020).
Google Scholar
Schimpl, A., Lemmon, R. M. & Calvin, M. Cyanamide formation beneath primitive Earth situations. Science 147, 149–150 (1965).
Google Scholar
Gartner, Z. J., Kanan, M. W. & Liu, D. R. Increasing the response scope of DNA-templated synthesis. Angew. Chem. Int. Ed. Engl. 41, 1796–1800 (2002).
Google Scholar
Liu, Z. et al. Harnessing chemical vitality for the activation and becoming a member of of prebiotic constructing blocks. Nat. Chem. 12, 1023–1028 (2020).
Google Scholar
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in impartial water. Science 370, 865–869 (2020).
Google Scholar
Schneider, C. et al. Noncanonical RNA nucleosides as molecular fossils of an early Earth—technology by prebiotic methylations and carbamoylations. Angew. Chem. Int. Ed. Engl. 57, 5943–5946 (2018).
Google Scholar
Hazard, G., Plasson, R. & Pascal, R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem. Soc. Rev. 41, 5416–5429 (2012).
Google Scholar
Bondalapati, S., Jbara, M. & Brik, A. Increasing the chemical toolbox for the synthesis of huge and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).
Google Scholar
Berg, P. The chemical synthesis of amino acyl adenylates. J. Biol. Chem. 233, 608–611 (1958).
Google Scholar
Wu, L.-F., Su, M., Liu, Z., Bjork, S. J. & Sutherland, J. D. Interstrand aminoacyl switch in a tRNA acceptor stem-overhang mimic. J. Am. Chem. Soc. 143, 11836–11842 (2021).
Google Scholar