A prebiotically plausible scenario of an RNA–peptide world


  • Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Article 
    ADS 

    Google Scholar 

  • Orgel, L. E. Evolution of the genetic equipment. J. Mol. Biol. 38, 381–393 (1968).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Crick, F. H. C., Brenner, S., Klug, A. & Pieczenik, G. A hypothesis on the origin of protein synthesis. Orig. Life Evol. Biosph. 7, 389–397 (1976).

    CAS 
    Article 

    Google Scholar 

  • Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Bowman, J. C., Hud, N. V. & Williams, L. D. The ribosome problem to the RNA world. J. Mol. Evol. 80, 143–161 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Decatur, W. A. & Fournier, M. J. rRNA modifications and ribosome operate. Developments Biochem. Sci 27, 344–351 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carell, T. et al. Construction and performance of noncanonical nucleobases. Angew. Chem. Int. Ed. Engl. 51, 7110–7131 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wong, J. T.-F. Origin of genetically encoded protein synthesis: a mannequin based mostly on choice for RNA peptidation. Orig. Life Evol. Biosph. 21, 165–176 (1991).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Di Giulio, M. Reflections on the origin of the genetic code: a speculation. J. Theor. Biol. 191, 191–196 (1998).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Rios, A. C. & Tor, Y. On the origin of the canonical nucleobases: an evaluation of choice pressures throughout chemical and early organic evolution. Isr. J. Chem. 53, 469–483 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grosjean, H. & Westhof, E. An built-in, structure- and energy-based view of the genetic code. Nucleic Acids Res. 44, 8020–8040 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beenstock, J. & Sicheri, F. The structural and useful workings of KEOPS. Nucleic Acids Res. 49, 10818–10834 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Di Giulio, M. On the RNA world: proof in favor of an early ribonucleopeptide world. J. Mol. Evol. 45, 571–578 (1997).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Ramakrishnan, V. Ribosome construction and the mechanism of translation. Cell 108, 557–572 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fox, G. E. Origin and evolution of the ribosome. Chilly Spring Harb. Perspect. Biol. 2, a003483 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowman, J. C., Petrov, A. S., Frenkel-Pinter, M., Penev, P. I. & Williams, L. D. Root of the tree: the importance, evolution, and origins of the ribosome. Chem. Rev. 120, 4848–4878 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eigen, M. & Schuster, P. A precept of pure self-organization. Naturwissenschaften 64, 541–565 (1977).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Szathmáry, E. Coding coenzyme handles: a speculation for the origin of the genetic code. Proc. Natl Acad. Sci. USA 90, 9916–9920 (1993).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Noller, H. F. RNA construction: studying the ribosome. Science 309, 1508–1514 (2005).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Steitz, T. A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9, 242–253 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Koonin, E. V. Comparative genomics, minimal gene-sets and the final common frequent ancestor. Nat. Rev. Microbiol. 1, 127–136 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Woese, C. The common ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Becerra, A., Delaye, L., Islas, S. & Lazcano, A. The very early phases of organic evolution and the character of the final frequent ancestor of the three main cell domains. Annu. Rev. Ecol. Evol. Syst. 38, 361–379 (2007).

    Article 

    Google Scholar 

  • Kuhn, H. Self-organization of molecular techniques and evolution of the genetic equipment. Angew. Chem. Int. Ed. Engl. 11, 798–820 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kuhn, H. & Waser, J. Molecular self-organization and the origin of life. Angew. Chem. Int. Ed. Engl. 20, 500–520 (1981).

    Article 

    Google Scholar 

  • Tamura, Ok. & Schimmel, P. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system. Proc. Natl Acad. Sci. USA 98, 1393–1397 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Tamura, Ok. & Schimmel, P. Peptide synthesis with a template-like RNA information and aminoacyl phosphate adaptors. Proc. Natl Acad. Sci. USA 100, 8666–8669 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Turk, R. M., Chumachenko, N. V. & Yarus, M. A number of translational merchandise from a five-nucleotide ribozyme. Proc. Natl Acad. Sci. USA 107, 4585–4589 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Jash, B., Tremmel, P., Jovanovic, D. & Richert, C. Single nucleotide translation with out ribosomes. Nat. Chem. 13, 751–757 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Forsythe, J. G. et al. Ester-mediated amide bond formation pushed by moist–dry cycles: a attainable path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. Engl. 54, 9871–9875 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Becker, S. et al. Moist-dry cycles allow the parallel origin of canonical and non-canonical nucleosides by steady synthesis. Nat. Commun. 9, 163 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tetzlaff, C. N. & Richert, C. Synthesis and hydrolytic stability of 5′-aminoacylated oligouridylic acids. Tetrahedron Lett. 42, 5681–5684 (2001).

    CAS 
    Article 

    Google Scholar 

  • Schweizer, M. P., McGrath, Ok. & Baczynskyj, L. The isolation and characterization of N-[9-(βd-ribofuranosyl)-purin-6-ylcarbamoyl]glycine from yeast switch RNA. Biochem. Biophys. Res. Commun. 40, 1046–1052 (1970).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Perrochia, L. et al. In vitro biosynthesis of a common t6A tRNA modification in Archaea and Eukarya. Nucleic Acids Res. 41, 1953–1964 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kimura-Harada, F., Von Minden, D. L., McCloskey, J. A. & Nishimura, S. N-[(9-βd-Ribofuranosylpurin-6-yl)-N-methylcarbamoyl]threonine, a modified nucleoside remoted from Escherichia coli threonine switch ribonucleic acid. Biochemistry 11, 3910–3915 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Robertson, M. & Miller, S. Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268, 702–705 (1995).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Murphy, F. V., Ramakrishnan, V., Malkiewicz, A. & Agris, P. F. The position of modifications in codon discrimination by tRNALysUUU. Nat. Struct. Mol. Biol. 11, 1186–1191 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kitamura, A. et al. Characterization and construction of the Aquifex aeolicus protein DUF752: a bacterial tRNA-methyltransferase (MnmC2) functioning with out the normally fused oxidase area (MnmC1). J. Biol. Chem. 287, 43950–43960 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hutchby, M. et al. Hindered ureas as masked isocyanates: facile carbamoylation of nucleophiles beneath impartial situations. Angew. Chem. Int. Ed. Engl. 48, 8721–8724 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ohkubo, A. et al. New thermolytic carbamoyl teams for the safety of nucleobases. Org. Biomol. Chem. 7, 687–694 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nainytė, M. et al. Amino acid modified RNA bases as constructing blocks of an early Earth RNA-peptide world. Chem. Eur. J. 26, 14856–14860 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Schimpl, A., Lemmon, R. M. & Calvin, M. Cyanamide formation beneath primitive Earth situations. Science 147, 149–150 (1965).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Gartner, Z. J., Kanan, M. W. & Liu, D. R. Increasing the response scope of DNA-templated synthesis. Angew. Chem. Int. Ed. Engl. 41, 1796–1800 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Z. et al. Harnessing chemical vitality for the activation and becoming a member of of prebiotic constructing blocks. Nat. Chem. 12, 1023–1028 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in impartial water. Science 370, 865–869 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Schneider, C. et al. Noncanonical RNA nucleosides as molecular fossils of an early Earth—technology by prebiotic methylations and carbamoylations. Angew. Chem. Int. Ed. Engl. 57, 5943–5946 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hazard, G., Plasson, R. & Pascal, R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem. Soc. Rev. 41, 5416–5429 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bondalapati, S., Jbara, M. & Brik, A. Increasing the chemical toolbox for the synthesis of huge and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berg, P. The chemical synthesis of amino acyl adenylates. J. Biol. Chem. 233, 608–611 (1958).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, L.-F., Su, M., Liu, Z., Bjork, S. J. & Sutherland, J. D. Interstrand aminoacyl switch in a tRNA acceptor stem-overhang mimic. J. Am. Chem. Soc. 143, 11836–11842 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leave a Reply