A natural mutator allele shapes mutation spectrum variation in mice


  • Lynch, M. et al. Genetic drift, choice and the evolution of the mutation fee. Nat. Rev. Genet. 17, 704–714 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ashbrook, D. G. et al. A platform for experimental precision medication: the prolonged BXD mouse household. Cell Syst. 12, 235–247.e9 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Viel, A. et al. A selected mutational signature related to DNA 8-oxoguanine persistence in MUTYH-defective colorectal most cancers. eBioMedicine 20, 39–49 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pilati, C. et al. Mutational signature evaluation identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. J. Pathol. 242, 10–15 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of excessive mutation charges in experimental populations of E. coli. Nature 387, 703–705 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dawson, Ok. J. Evolutionarily secure mutation charges. J. Theor. Biol. 194, 143–157 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sasani, T. A. et al. Massive, three-generation human households reveal post-zygotic mosaicism and variability in germline mutation accumulation. eLife 8, e46922 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rahbari, R. et al. Timing, charges and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kessler, M. D. et al. De novo mutations throughout 1,465 various genomes reveal mutational insights and reductions within the Amish founder inhabitants. Proc. Natl Acad. Sci. USA 117, 2560–2569 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Robinson, P. S. et al. Elevated somatic mutation burdens in regular human cells resulting from faulty DNA polymerases. Nat. Genet. 53, 1434–1442 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harris, Ok. Proof for current, population-specific evolution of the human mutation fee. Proc. Natl Acad. Sci. USA 112, 3439–3444 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harris, Ok. & Pritchard, J. Ok. Fast evolution of the human mutation spectrum. eLife 6, 415 (2017).

    Article 

    Google Scholar 

  • Mathieson, I. & Reich, D. Variations within the uncommon variant spectrum amongst human populations. PLoS Genet. 13, e1006581 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jónsson, H. et al. Parental affect on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519–522 (2017).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Ségurel, L., Wyman, M. J. & Przeworski, M. Determinants of mutation fee variation within the human germline. Annu. Rev. Genomics Hum. Genet. 15, 47–70 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Halligan, D. L. & Keightley, P. D. Spontaneous mutation accumulation research in evolutionary genetics. Annu. Rev. Ecol. 40, 151–172 (2009).

    Article 

    Google Scholar 

  • Dumont, B. L. Important pressure variation within the mutation spectra of inbred laboratory mice. Mol. Biol. Evol. 36, 865–874 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lindsay, S. J., Rahbari, R., Kaplanis, J., Keane, T. & Hurles, M. E. Similarities and variations in patterns of germline mutation between mice and people. Nat. Commun. 10, 4053 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Broman, Ok. W. et al. R/qtl2: software program for mapping quantitative trait loci with high-dimensional knowledge and multiparent populations. Genetics 211, 495–502 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cingolani, P. et al. A program for annotating and predicting the consequences of single nucleotide polymorphisms, SnpEff: SNPs within the genome of Drosophila melanogaster pressure w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gene Ontology Consortium. The Gene Ontology useful resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ashburner, M. et al. Gene ontology: device for the unification of biology. Nat. Genet. 25, 25–29 (2000).

  • David, S. S., O’Shea, V. L. & Kundu, S. Base-excision restore of oxidative DNA harm. Nature 447, 941–950 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ohno, M. et al. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci. Rep. 4, 4689 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Alexandrov, L. B. et al. The repertoire of mutational signatures in human most cancers. Nature 578, 94–101 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Georgeson, P. et al. Evaluating the utility of tumour mutational signatures for figuring out hereditary colorectal most cancers and polyposis syndrome carriers. Intestine 70, 2138–2149 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Islam, S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Preprint at https://doi.org/10.1101/2020.12.13.422570 (2021).

  • Mulligan, M. Ok., Mozhui, Ok., Prins, P. & Williams, R. W. GeneNetwork: a toolbox for programs genetics. Strategies Mol. Biol. 1488, 75–120 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keane, T. M. et al. Mouse genomic variation and its impact on phenotypes and gene regulation. Nature 477, 289–294 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Segovia, R., Shen, Y., Lujan, S. A., Jones, S. J. M. & Stirling, P. C. Hypermutation signature reveals a slippage and realignment mannequin of translesion synthesis by Rev3 polymerase in cisplatin-treated yeast. Proc. Natl Acad. Sci. USA 114, 2663–2668 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Landrum, M. J. et al. ClinVar: enhancements to accessing knowledge. Nucleic Acids Res. 48, D835–D844 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Choi, Y. & Chan, A. P. PROVEAN internet server: a device to foretell the practical impact of amino acid substitutions and indels. Bioinformatics 31, 2745–2747 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid adjustments that have an effect on protein perform. Nucleic Acids Res. 31, 3812–3814 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, H. et al. Subspecific origin and haplotype variety within the laboratory mouse. Nat. Genet. 43, 648–655 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harr, B. et al. Genomic assets for wild populations of the home mouse, Mus musculus and its shut relative Mus spretus. Sci. Knowledge 3, 160075 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huber, C. D., Kim, B. Y., Marsden, C. D. & Lohmueller, Ok. E. Figuring out the components driving selective results of recent nonsynonymous mutations. Proc. Natl Acad. Sci. USA 114, 4465–4470 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Geraldes, A. et al. Inferring the historical past of speciation in home mice from autosomal, X-linked, Y-linked and mitochondrial genes. Mol. Ecol. 17, 5349–5363 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Phifer-Rixey, M. et al. Adaptive evolution and efficient inhabitants measurement in wild home mice. Mol. Biol. Evol. 29, 2949–2955 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gou, L., Bloom, J. S. & Kruglyak, L. The genetic foundation of mutation fee variation in yeast. Genetics 211, 731–740 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jiang, P. et al. A modified fluctuation assay reveals a pure mutator phenotype that drives mutation spectrum variation inside Saccharomyces cerevisiae. Evol. Biol. Genet. Genomics 10, e68285 (2021).

    CAS 

    Google Scholar 

  • Robinson, P. S. et al. Inherited MUTYH mutations trigger elevated somatic mutation charges and distinctive mutational signatures in regular human cells. Preprint at https://doi.org/10.1101/2021.10.20.465093 (2021).

  • Goldberg, M. E. & Harris, Ok. Mutational signatures of replication timing and epigenetic modification persist by the worldwide divergence of mutation spectra throughout the nice ape phylogeny. Genome Biol. Evol. 14, evab104 (2021).

    PubMed Central 
    Article 

    Google Scholar 

  • Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • DePristo, M. A. et al. A framework for variation discovery and genotyping utilizing next-generation DNA sequencing knowledge. Nat. Genet. 43, 491–498 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, X. et al. Excessive-throughput sequencing of the DBA/2J mouse genome. BMC Bioinf. 11, O7 (2010).

    Article 

    Google Scholar 

  • Pedersen, B. S. & Quinlan, A. R. cyvcf2: quick, versatile variant evaluation with Python. Bioinformatics 33, 1867–1869 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • DeWitt, W. S. mutyper: assigning and summarizing mutation sorts for analyzing germline mutation spectra. Preprint at https://doi.org/10.1101/2020.07.01.183392 (2020).

  • Neph, S. et al. BEDOPS: high-performance genomic function operations. Bioinformatics 28, 1919–1920 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Papadopoulos, J. S. & Agarwala, R. COBALT: constraint-based alignment device for a number of protein sequences. Bioinformatics 23, 1073–1079 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Suyama, M., Torrents, D. & Bork, P. PAL2NAL: sturdy conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, evaluation, and visualization of phylogenomic knowledge. Mol. Biol. Evol. 33, 1635–1638 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cock, P. J. A. et al. Biopython: freely out there Python instruments for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leave a Reply