Revival of light signalling in the postmortem mouse and human retina


  • Borjigin, J. et al. Surge of neurophysiological coherence and connectivity within the dying mind. Proc. Natl Acad. Sci. USA 110, 14432–14437 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cole, S. L. & Corday, E. 4-minute restrict for cardiac resuscitation. J. Am. Med. Assoc. 161, 1454–1458 (1956).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parnia, S., Waller, D. G., Yeates, R. & Fenwick, P. A qualitative and quantitative examine of the incidence, options and aetiology of close to demise experiences in cardiac arrest survivors. Resuscitation 48, 149–156 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vrselja, Z. et al. Restoration of mind circulation and mobile features hours autopsy. Nature 568, 336–343 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Iyer, A. et al. Pathophysiological developments throughout withdrawal of life help: implications for organ donation after circulatory demise. Transplantation 100, 2621–2629 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Donaldson, A. E. & Lamont, I. L. Biochemistry modifications that happen after demise: potential markers for figuring out autopsy interval. PLoS ONE 8, e82011 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yu, D. Y. & Cringle, S. J. Oxygen distribution within the mouse retina. Make investments. Ophthalmol. Vis. Sci. 47, 1109–1112 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Zhu, S. et al. Impression of euthanasia, dissection and postmortem delay on metabolic profile in mouse retina and RPE/choroid. Exp. Eye Res. 174, 113–120 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, J. Y. & Prentice, H. Function of taurine within the central nervous system. J. Biomed. Sci. 17, S1 (2010). Suppl. 1.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ingram, N. T., Fain, G. L. & Sampath, A. P. Elevated power requirement of cone photoreceptors. Proc. Natl Acad. Sci. USA 117, 19599–19603 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cowan, C. S. et al. Cell varieties of the human retina and its organoids at single-cell decision. Cell 182, 1623–1640.e1634 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, J. S. & Kefalov, V. J. Another pathway mediates the mouse and human cone visible cycle. Curr. Biol. 19, 1665–1669 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schnapf, J. L., Kraft, T. W. & Baylor, D. A. Spectral sensitivity of human cone photoreceptors. Nature 325, 439–441 (1987).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kraft, T. W., Neitz, J. & Neitz, M. Spectra of human L cones. Imaginative and prescient Res. 38, 3663–3670 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, J. C., Voaden, M. J. & Marshall, J. Survival of construction and performance in postmortem rat and human retinas: rhodopsin regeneration, cGMP and the ERG. Curr. Eye Res. 9, 151–162 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, J. C., Voaden, M. J., Marshall, J. & Kemp, C. M. Electrophysiologic traits of human and rat retinas in vitro. Doc. Ophthalmol. 76, 27–35 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, J. C., Arden, G. B., Voaden, M. J. & Marshall, J. Survival of cone responses in postmortem human retina. Doc. Ophthalmol. 83, 91–96 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kraft, T. W., Schneeweis, D. M. & Schnapf, J. L. Visible transduction in human rod photoreceptors. J. Physiol. 464, 747–765 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vinberg, F., Kolesnikov, A. V. & Kefalov, V. J. Ex vivo ERG evaluation of photoreceptors utilizing an in vivo ERG system. Imaginative and prescient Res. 101, 108–117 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nymark, S., Haldin, C., Tenhu, H. & Koskelainen, A. A brand new technique for measuring free drug focus: retinal tissue as a biosensor. Make investments. Ophthalmol. Vis. Sci. 47, 2583–2588 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Weinstein, G. W., Hobson, R. R. & Dowling, J. E. Gentle and darkish adaptation within the remoted rat retina. Nature 215, 134–138 (1967).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winkler, B. S. The electroretinogram of the remoted rat retina. Imaginative and prescient Res. 12, 1183–1198 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Granit, R. The parts of the retinal motion potential in mammals and their relation to the discharge within the optic nerve. J. Physiol. 77, 207–239 (1933).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Masland, R. H. & Ames, A. third Dissociation of subject potential from neuronal exercise within the remoted retina: failure of the b-wave with regular ganglion cell response. J. Neurobiol. 6, 305–312 (1975).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, H. M., Park, Ok. H. & Woo, S. J. Correlation of electroretinography parts with visible perform and prognosis of central retinal artery occlusion. Sci. Rep. 10, 12146 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reinhard, Ok. et al. Hypothermia promotes survival of ischemic retinal ganglion cells. Make investments. Ophthalmol. Vis. Sci. 57, 658–663 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mure, L. S., Vinberg, F., Hanneken, A. & Panda, S. Useful variety of human intrinsically photosensitive retinal ganglion cells. Science 366, 1251–1255 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raeburn, C. D., Cleveland, J. C. Jr, Zimmerman, M. A. & Harken, A. H. Organ preconditioning. Arch. Surg. 136, 1263–1266 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reinhard, Ok. & Munch, T. A. Visible properties of human retinal ganglion cells. PLoS ONE 16, e0246952 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Soto, F. et al. Environment friendly coding by midget and parasol ganglion cells within the human retina. Neuron 107, 656–666.e655 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Weinstein, G. W., Hobson, R. R. & Baker, F. H. Extracellular recordings from human retinal ganglion cells. Science 171, 1021–1022 (1971).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Robson, J. G., Saszik, S. M., Ahmed, J. & Frishman, L. J. Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J. Physiol. 547, 509–530 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuchenbecker, J. A., Greenwald, S. H., Neitz, M. & Neitz, J. Cone-isolating ON–OFF electroretinogram for finding out chromatic pathways within the retina. J. Decide. Soc. Am. A 31, A208–A213 (2014).

    ADS 
    Article 

    Google Scholar 

  • Yan, W. et al. Cell atlas of the human fovea and peripheral retina. Sci. Rep. 10, 9802 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, Y. et al. Single-cell evaluation of human retina identifies evolutionarily conserved and species-specific mechanisms controlling growth. Dev. Cell 53, 473–491.e479 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kling, A. et al. Useful group of midget and parasol ganglion cells within the human retina. Preprint at https://doi.org/10.1101/2020.08.07.240762 (2020).

  • Yi, W. et al. A single-cell transcriptome atlas of the getting old human and macaque retina. Nat. Sci. Rev. 8, nwaa179 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fortenbach, C. R., Kessler, C., Peinado Allina, G. & Burns, M. E. Dashing rod restoration improves temporal decision within the retina. Imaginative and prescient Res. 110, 57–67 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pepperberg, D. R. et al. Gentle-dependent delay within the falling part of the retinal rod photoresponse. Vis. Neurosci. 8, 9–18 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gross, O. P. & Burns, M. E. Management of rhodopsin’s lively lifetime by arrestin-1 expression in mammalian rods. J. Neurosci. 30, 3450–3457 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krispel, C. M. et al. RGS expression rate-limits restoration of rod photoresponses. Neuron 51, 409–416 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Owsley, C. et al. Psychophysical proof for rod vulnerability in age-related macular degeneration. Make investments. Ophthalmol. Vis. Sci. 41, 267–273 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Curcio, C. A., Medeiros, N. E. & Millican, C. L. Photoreceptor loss in age-related macular degeneration. Make investments. Ophthalmol. Vis. Sci. 37, 1236–1249 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Sinha, R. et al. Mobile and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168, 413–426.e412 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van Hateren, J. H. & Lamb, T. D. The photocurrent response of human cones is quick and monophasic. BMC Neurosci. 7, 34 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pearson, R. A. et al. Restoration of imaginative and prescient after transplantation of photoreceptors. Nature 485, 99–103 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, T. et al. Activation of rod enter in a mannequin of retinal degeneration reverses retinal transforming and induces formation of purposeful synapses and restoration of visible signaling within the grownup retina. J. Neurosci. 39, 6798–6810 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Telias, M. et al. Retinoic acid induces hyperactivity, and blocking its receptor unmasks mild responses and augments imaginative and prescient in retinal degeneration. Neuron 102, 574–586.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jones, B. W. et al. Retinal transforming and metabolic alterations in human AMD. Entrance. Cell. Neurosci. 10, 103 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, B. W. et al. Retinal transforming in human retinitis pigmentosa. Exp. Eye Res. 150, 149–165 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Calvert, P. D. et al. Phototransduction in transgenic mice after focused deletion of the rod transducin α-subunit. Proc. Natl Acad. Sci. USA 97, 13913–13918 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gurevich, L. & Slaughter, M. M. Comparability of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Imaginative and prescient Res. 33, 2431–2435 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bolnick, D. A., Walter, A. E. & Sillman, A. J. Barium suppresses sluggish PIII in perfused bullfrog retina. Imaginative and prescient Res. 19, 1117–1119 (1979).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sakami, S. et al. Probing mechanisms of photoreceptor degeneration in a brand new mouse mannequin of the frequent type of autosomal dominant retinitis pigmentosa attributable to P23H opsin mutations. J. Biol. Chem. 286, 10551–10567 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marc, R. E., Murry, R. F. & Basinger, S. F. Sample recognition of amino acid signatures in retinal neurons. J. Neurosci. 15, 5106–5129 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lamb, T. D. & Pugh, E. N. Jr A quantitative account of the activation steps concerned in phototransduction in amphibian photoreceptors. J. Physiol. 449, 719–758 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, N. P. & Lamb, T. D. The a-wave of the human electroretinogram recorded with a minimally invasive approach. Imaginative and prescient Res. 37, 2943–2952 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leave a Reply