Borjigin, J. et al. Surge of neurophysiological coherence and connectivity within the dying mind. Proc. Natl Acad. Sci. USA 110, 14432–14437 (2013).
Google Scholar
Cole, S. L. & Corday, E. 4-minute restrict for cardiac resuscitation. J. Am. Med. Assoc. 161, 1454–1458 (1956).
Google Scholar
Parnia, S., Waller, D. G., Yeates, R. & Fenwick, P. A qualitative and quantitative examine of the incidence, options and aetiology of close to demise experiences in cardiac arrest survivors. Resuscitation 48, 149–156 (2001).
Google Scholar
Vrselja, Z. et al. Restoration of mind circulation and mobile features hours autopsy. Nature 568, 336–343 (2019).
Google Scholar
Iyer, A. et al. Pathophysiological developments throughout withdrawal of life help: implications for organ donation after circulatory demise. Transplantation 100, 2621–2629 (2016).
Google Scholar
Donaldson, A. E. & Lamont, I. L. Biochemistry modifications that happen after demise: potential markers for figuring out autopsy interval. PLoS ONE 8, e82011 (2013).
Google Scholar
Yu, D. Y. & Cringle, S. J. Oxygen distribution within the mouse retina. Make investments. Ophthalmol. Vis. Sci. 47, 1109–1112 (2006).
Google Scholar
Zhu, S. et al. Impression of euthanasia, dissection and postmortem delay on metabolic profile in mouse retina and RPE/choroid. Exp. Eye Res. 174, 113–120 (2018).
Google Scholar
Wu, J. Y. & Prentice, H. Function of taurine within the central nervous system. J. Biomed. Sci. 17, S1 (2010). Suppl. 1.
Google Scholar
Ingram, N. T., Fain, G. L. & Sampath, A. P. Elevated power requirement of cone photoreceptors. Proc. Natl Acad. Sci. USA 117, 19599–19603 (2020).
Google Scholar
Cowan, C. S. et al. Cell varieties of the human retina and its organoids at single-cell decision. Cell 182, 1623–1640.e1634 (2020).
Google Scholar
Wang, J. S. & Kefalov, V. J. Another pathway mediates the mouse and human cone visible cycle. Curr. Biol. 19, 1665–1669 (2009).
Google Scholar
Schnapf, J. L., Kraft, T. W. & Baylor, D. A. Spectral sensitivity of human cone photoreceptors. Nature 325, 439–441 (1987).
Google Scholar
Kraft, T. W., Neitz, J. & Neitz, M. Spectra of human L cones. Imaginative and prescient Res. 38, 3663–3670 (1998).
Google Scholar
Huang, J. C., Voaden, M. J. & Marshall, J. Survival of construction and performance in postmortem rat and human retinas: rhodopsin regeneration, cGMP and the ERG. Curr. Eye Res. 9, 151–162 (1990).
Google Scholar
Huang, J. C., Voaden, M. J., Marshall, J. & Kemp, C. M. Electrophysiologic traits of human and rat retinas in vitro. Doc. Ophthalmol. 76, 27–35 (1990).
Google Scholar
Huang, J. C., Arden, G. B., Voaden, M. J. & Marshall, J. Survival of cone responses in postmortem human retina. Doc. Ophthalmol. 83, 91–96 (1993).
Google Scholar
Kraft, T. W., Schneeweis, D. M. & Schnapf, J. L. Visible transduction in human rod photoreceptors. J. Physiol. 464, 747–765 (1993).
Google Scholar
Vinberg, F., Kolesnikov, A. V. & Kefalov, V. J. Ex vivo ERG evaluation of photoreceptors utilizing an in vivo ERG system. Imaginative and prescient Res. 101, 108–117 (2014).
Google Scholar
Nymark, S., Haldin, C., Tenhu, H. & Koskelainen, A. A brand new technique for measuring free drug focus: retinal tissue as a biosensor. Make investments. Ophthalmol. Vis. Sci. 47, 2583–2588 (2006).
Google Scholar
Weinstein, G. W., Hobson, R. R. & Dowling, J. E. Gentle and darkish adaptation within the remoted rat retina. Nature 215, 134–138 (1967).
Google Scholar
Winkler, B. S. The electroretinogram of the remoted rat retina. Imaginative and prescient Res. 12, 1183–1198 (1972).
Google Scholar
Granit, R. The parts of the retinal motion potential in mammals and their relation to the discharge within the optic nerve. J. Physiol. 77, 207–239 (1933).
Google Scholar
Masland, R. H. & Ames, A. third Dissociation of subject potential from neuronal exercise within the remoted retina: failure of the b-wave with regular ganglion cell response. J. Neurobiol. 6, 305–312 (1975).
Google Scholar
Kim, H. M., Park, Ok. H. & Woo, S. J. Correlation of electroretinography parts with visible perform and prognosis of central retinal artery occlusion. Sci. Rep. 10, 12146 (2020).
Google Scholar
Reinhard, Ok. et al. Hypothermia promotes survival of ischemic retinal ganglion cells. Make investments. Ophthalmol. Vis. Sci. 57, 658–663 (2016).
Google Scholar
Mure, L. S., Vinberg, F., Hanneken, A. & Panda, S. Useful variety of human intrinsically photosensitive retinal ganglion cells. Science 366, 1251–1255 (2019).
Google Scholar
Raeburn, C. D., Cleveland, J. C. Jr, Zimmerman, M. A. & Harken, A. H. Organ preconditioning. Arch. Surg. 136, 1263–1266 (2001).
Google Scholar
Reinhard, Ok. & Munch, T. A. Visible properties of human retinal ganglion cells. PLoS ONE 16, e0246952 (2021).
Google Scholar
Soto, F. et al. Environment friendly coding by midget and parasol ganglion cells within the human retina. Neuron 107, 656–666.e655 (2020).
Google Scholar
Weinstein, G. W., Hobson, R. R. & Baker, F. H. Extracellular recordings from human retinal ganglion cells. Science 171, 1021–1022 (1971).
Google Scholar
Robson, J. G., Saszik, S. M., Ahmed, J. & Frishman, L. J. Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J. Physiol. 547, 509–530 (2003).
Google Scholar
Kuchenbecker, J. A., Greenwald, S. H., Neitz, M. & Neitz, J. Cone-isolating ON–OFF electroretinogram for finding out chromatic pathways within the retina. J. Decide. Soc. Am. A 31, A208–A213 (2014).
Google Scholar
Yan, W. et al. Cell atlas of the human fovea and peripheral retina. Sci. Rep. 10, 9802 (2020).
Google Scholar
Lu, Y. et al. Single-cell evaluation of human retina identifies evolutionarily conserved and species-specific mechanisms controlling growth. Dev. Cell 53, 473–491.e479 (2020).
Google Scholar
Kling, A. et al. Useful group of midget and parasol ganglion cells within the human retina. Preprint at https://doi.org/10.1101/2020.08.07.240762 (2020).
Yi, W. et al. A single-cell transcriptome atlas of the getting old human and macaque retina. Nat. Sci. Rev. 8, nwaa179 (2020).
Google Scholar
Fortenbach, C. R., Kessler, C., Peinado Allina, G. & Burns, M. E. Dashing rod restoration improves temporal decision within the retina. Imaginative and prescient Res. 110, 57–67 (2015).
Google Scholar
Pepperberg, D. R. et al. Gentle-dependent delay within the falling part of the retinal rod photoresponse. Vis. Neurosci. 8, 9–18 (1992).
Google Scholar
Gross, O. P. & Burns, M. E. Management of rhodopsin’s lively lifetime by arrestin-1 expression in mammalian rods. J. Neurosci. 30, 3450–3457 (2010).
Google Scholar
Krispel, C. M. et al. RGS expression rate-limits restoration of rod photoresponses. Neuron 51, 409–416 (2006).
Google Scholar
Owsley, C. et al. Psychophysical proof for rod vulnerability in age-related macular degeneration. Make investments. Ophthalmol. Vis. Sci. 41, 267–273 (2000).
Google Scholar
Curcio, C. A., Medeiros, N. E. & Millican, C. L. Photoreceptor loss in age-related macular degeneration. Make investments. Ophthalmol. Vis. Sci. 37, 1236–1249 (1996).
Google Scholar
Sinha, R. et al. Mobile and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168, 413–426.e412 (2017).
Google Scholar
van Hateren, J. H. & Lamb, T. D. The photocurrent response of human cones is quick and monophasic. BMC Neurosci. 7, 34 (2006).
Google Scholar
Pearson, R. A. et al. Restoration of imaginative and prescient after transplantation of photoreceptors. Nature 485, 99–103 (2012).
Google Scholar
Wang, T. et al. Activation of rod enter in a mannequin of retinal degeneration reverses retinal transforming and induces formation of purposeful synapses and restoration of visible signaling within the grownup retina. J. Neurosci. 39, 6798–6810 (2019).
Google Scholar
Telias, M. et al. Retinoic acid induces hyperactivity, and blocking its receptor unmasks mild responses and augments imaginative and prescient in retinal degeneration. Neuron 102, 574–586.e5 (2019).
Google Scholar
Jones, B. W. et al. Retinal transforming and metabolic alterations in human AMD. Entrance. Cell. Neurosci. 10, 103 (2016).
Google Scholar
Jones, B. W. et al. Retinal transforming in human retinitis pigmentosa. Exp. Eye Res. 150, 149–165 (2016).
Google Scholar
Calvert, P. D. et al. Phototransduction in transgenic mice after focused deletion of the rod transducin α-subunit. Proc. Natl Acad. Sci. USA 97, 13913–13918 (2000).
Google Scholar
Gurevich, L. & Slaughter, M. M. Comparability of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Imaginative and prescient Res. 33, 2431–2435 (1993).
Google Scholar
Bolnick, D. A., Walter, A. E. & Sillman, A. J. Barium suppresses sluggish PIII in perfused bullfrog retina. Imaginative and prescient Res. 19, 1117–1119 (1979).
Google Scholar
Sakami, S. et al. Probing mechanisms of photoreceptor degeneration in a brand new mouse mannequin of the frequent type of autosomal dominant retinitis pigmentosa attributable to P23H opsin mutations. J. Biol. Chem. 286, 10551–10567 (2011).
Google Scholar
Marc, R. E., Murry, R. F. & Basinger, S. F. Sample recognition of amino acid signatures in retinal neurons. J. Neurosci. 15, 5106–5129 (1995).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).
Google Scholar
Lamb, T. D. & Pugh, E. N. Jr A quantitative account of the activation steps concerned in phototransduction in amphibian photoreceptors. J. Physiol. 449, 719–758 (1992).
Google Scholar
Smith, N. P. & Lamb, T. D. The a-wave of the human electroretinogram recorded with a minimally invasive approach. Imaginative and prescient Res. 37, 2943–2952 (1997).
Google Scholar