Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise within the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).
Google Scholar
Lutcke, H., Margolis, D. J. & Helmchen, F. Regular or altering? Lengthy-term monitoring of neuronal inhabitants exercise. Tendencies Neurosci. 36, 375–384 (2013).
Google Scholar
Rumyantsev, O. I. et al. Elementary bounds on the constancy of sensory cortical coding. Nature 580, 100–105 (2020).
Google Scholar
Stein, R. B., Gossen, E. R. & Jones, Ok. E. Neuronal variability: noise or a part of the sign? Nat. Rev. Neurosci. 6, 389–397 (2005).
Google Scholar
Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge charge and its implications for psychophysical efficiency. Nature 370, 140–143 (1994).
Google Scholar
Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal exercise patterns in parietal cortex. Cell 170, 986–999 (2017).
Google Scholar
Greicius, M. D., Supekar, Ok., Menon, V. & Dougherty, R. F. Resting-state practical connectivity displays structural connectivity within the default mode community. Cereb. Cortex 19, 72–78 (2009).
Google Scholar
Rosenberg, M. D. et al. A neuromarker of sustained consideration from whole-brain practical connectivity. Nat. Neurosci. 19, 165–171 (2016).
Google Scholar
Montijn, J. S., Meijer, G. T., Lansink, C. S. & Pennartz, C. M. Inhabitants-level neural codes are strong to single-neuron variability from a multidimensional coding perspective. Cell Rep. 16, 2486–2498 (2016).
Google Scholar
Semedo, J. D., Zandvakili, A., Machens, C. Ok., Byron, M. Y. & Kohn, A. Cortical areas work together by way of a communication subspace. Neuron 102, 249–259 (2019).
Google Scholar
Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide exercise. Science 364, 255 (2019).
Google Scholar
Abbott, L. F. & Dayan, P. The impact of correlated variability on the accuracy of a inhabitants code. Neural Comput. 11, 91–101 (1999).
Google Scholar
Averbeck, B. B. & Lee, D. Results of noise correlations on data encoding and decoding. J. Neurophysiol. 95, 3633–3644 (2006).
Google Scholar
Moreno-Bote, R. et al. Data-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).
Google Scholar
Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A. & Yuste, R. Controlling visually guided conduct by holographic recalling of cortical ensembles. Cell 178, 447–457 (2019).
Google Scholar
Graf, A. B., Kohn, A., Jazayeri, M. & Movshon, J. A. Decoding the exercise of neuronal populations in macaque main visible cortex. Nat. Neurosci. 14, 239–245 (2011).
Google Scholar
Ziv, Y. et al. Lengthy-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).
Google Scholar
Xia, J., Marks, T. D., Goard, M. J. & Wessel, R. Steady illustration of a naturalistic film emerges from episodic exercise with achieve variability. Nat. Commun. 12, 5170 (2021).
Google Scholar
Gonzalez, W. G., Zhang, H., Harutyunyan, A. & Lois, C. Persistence of neuronal representations by way of time and harm within the hippocampus. Science 365, 821–825 (2019).
Google Scholar
Deitch, D., Rubin, A. & Ziv, Y. Representational drift within the mouse visible cortex. Curr. Biol. 31, 4327–4339 (2021).
Google Scholar
Sridharan, D., Levitin, D. J. & Menon, V. A crucial function for the fitting fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).
Google Scholar
Allen, W. E. et al. Thirst regulates motivated conduct by way of modulation of brainwide neural inhabitants dynamics. Science 364, 253 (2019).
Google Scholar
Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. Ok. Single-trial neural dynamics are dominated by richly diverse actions. Nat. Neurosci. 22, 1677–1686 (2019).
Google Scholar
Niell, C. M. & Stryker, M. P. Modulation of visible responses by behavioral state in mouse visible cortex. Neuron 65, 472–479 (2010).
Google Scholar
Montani, F., Kohn, A., Smith, M. A. & Schultz, S. R. The function of correlations in path and distinction coding within the main visible cortex. J. Neurosci. 27, 2338–2348 (2007).
Google Scholar
Goard, M. J., Pho, G. N., Woodson, J. & Sur, M. Distinct roles of visible, parietal, and frontal motor cortices in memory-guided sensorimotor selections. eLife 5, e13764 (2016).
Google Scholar
Poort, J. et al. Studying enhances sensory and a number of non-sensory representations in main visible cortex. Neuron 86, 1478–1490 (2015).
Google Scholar
Britten, Ok. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The evaluation of visible movement: a comparability of neuronal and psychophysical efficiency. J. Neurosci. 12, 4745–4765 (1992).
Google Scholar
Kanitscheider, I., Coen-Cagli, R. & Pouget, A. Origin of information-limiting noise correlations. Proc. Natl Acad. Sci. USA 112, E6973–E6982 (2015).
Google Scholar
Bullmore, E. & Sporns, O. Complicated mind networks: graph theoretical evaluation of structural and practical programs. Nat. Rev. Neurosci. 10, 186–198 (2009).
Google Scholar
Yu, Y., Stirman, J. N., Dorsett, C. R. & Smith, S. L. Mesoscale correlation construction with single cell decision throughout visible coding. Preprint at bioRxiv https://doi.org/10.1101/469114 (2018).
Gregoriou, G. G., Gotts, S. J. & Desimone, R. Cell-type-specific synchronization of neural exercise in FEF with V4 throughout consideration. Neuron 73, 581–594 (2012).
Google Scholar
Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. Excessive-frequency, long-range coupling between prefrontal and visible cortex throughout consideration. Science 324, 1207–1210 (2009).
Google Scholar
Ruff, D. A. & Cohen, M. R. Consideration will increase spike rely correlations between visible cortical areas. J. Neurosci. 36, 7523–7534 (2016).
Google Scholar
van Kempen, J. et al. High-down coordination of native cortical state throughout selective consideration. Neuron 109, 894–904 (2021).
Google Scholar
Chen, J. L., Voigt, F. F., Javadzadeh, M., Krueppel, R. & Helmchen, F. Lengthy-range inhabitants dynamics of anatomically outlined neocortical networks. eLife 5, e14679 (2016).
Google Scholar
Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. Ok. & Josic, Ok. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19, 383–393 (2016).
Google Scholar
Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).
Google Scholar
Wagner, M. J. et al. Shared cortex-cerebellum dynamics within the execution and studying of a motor activity. Cell 177, 669–682 (2019).
Google Scholar
Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, Ok. D. Distributed coding of selection, motion and engagement throughout the mouse mind. Nature 576, 266–273 (2019).
Google Scholar
Britten, Ok. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A relationship between behavioral selection and the visible responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).
Google Scholar
Keller, A. J., Roth, M. M. & Scanziani, M. Suggestions generates a second receptive area in neurons of the visible cortex. Nature 582, 545–549 (2020).
Google Scholar
Bondy, A. G., Haefner, R. M. & Cumming, B. G. Suggestions determines the construction of correlated variability in main visible cortex. Nat. Neurosci. 21, 598–606 (2018).
Google Scholar
Zipser, Ok., Lamme, V. A. & Schiller, P. H. Contextual modulation in main visible cortex. J. Neurosci. 16, 7376–7389 (1996).
Google Scholar
Mashour, G. A., Roelfsema, P., Changeux, J. P. & Dehaene, S. Acutely aware processing and the worldwide neuronal workspace speculation. Neuron 105, 776–798 (2020).
Google Scholar
Cohen, M. X. & Ranganath, C. Reinforcement studying alerts predict future selections. J. Neurosci. 27, 371–378 (2007).
Google Scholar
Bassett, D. S. & Bullmore, E. Small-world mind networks. Neuroscientist 12, 512–523 (2006).
Google Scholar
Oh, S. W. et al. A mesoscale connectome of the mouse mind. Nature 508, 207–214 (2014).
Google Scholar
Garrett, M. E., Nauhaus, I., Marshel, J. H. & Callaway, E. M. Topography and areal group of mouse visible cortex. J. Neurosci. 34, 12587–12600 (2014).
Google Scholar
Kalatsky, V. A. & Stryker, M. P. New paradigm for optical imaging: temporally encoded maps of intrinsic sign. Neuron 38, 529–545 (2003).
Google Scholar
Marshel, J. H., Garrett, M. E., Nauhaus, I. & Callaway, E. M. Practical specialization of seven mouse visible cortical areas. Neuron 72, 1040–1054 (2011).
Google Scholar
Zhuang, J. et al. An prolonged retinotopic map of mouse cortex. eLife 6, e18372 (2017).
Google Scholar
Lecoq, J. et al. Visualizing mammalian mind space interactions by dual-axis two-photon calcium imaging. Nat. Neurosci. 17, 1825–1829 (2014).
Google Scholar
Lein, E. S. et al. Genome-wide atlas of gene expression within the grownup mouse mind. Nature 445, 168–176 (2007).
Google Scholar
Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid strategy to subpixel registration based mostly on depth. IEEE Trans. Picture Course of. 7, 27–41 (1998).
Google Scholar
Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated evaluation of mobile alerts from large-scale calcium imaging knowledge. Neuron 63, 747–760 (2009).
Google Scholar
Kanitscheider, I., Coen-Cagli, R., Kohn, A. & Pouget, A. Measuring Fisher data precisely in correlated neural populations. PLoS Comput. Biol. 11, e1004218 (2015).
Google Scholar
Barker, M. & Rayens, W. Partial least squares for discrimination. J. Chemometr. 17, 166–173 (2003).
Google Scholar
Wold, H. in Multivariate Evaluation (ed. Krishnajah, P. R.) 391–420 (Tutorial, 1966).
Kohn, A. & Smith, M. A. Stimulus dependence of neuronal correlation in main visible cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005).
Google Scholar
Hotelling, H. in Breakthroughs in Statistics Vol. 2 (eds S. Kotz & N.L. Johnson) 162–190 (Springer, 1992).
Witten, D. M. & Tibshirani, R. J. Extensions of sparse canonical correlation evaluation with functions to genomic knowledge. Stat. Appl. Genet. Mol. Biol. 8, Article28 (2009).
Google Scholar
Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’networks. Nature 393, 440–442 (1998).
Google Scholar
Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Community construction of cerebral cortex shapes practical connectivity on a number of time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).
Google Scholar
Lu, J., Yu, X., Chen, G. & Cheng, D. Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circ. Syst. I 51, 787–796 (2004).
Google Scholar