Gibbin mesodermal regulation patterns epithelial development


  • Abe, M. et al. GATA3 is important for separating patterning domains throughout facial morphogenesis. Growth 148, dev199534 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tsarovina, Okay. et al. Important function of Gata transcription elements in sympathetic neuron growth. Growth 131, 4775–4786 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ralston, A. et al. Gata3 regulates trophoblast growth downstream of Tead4 and in parallel to Cdx2. Growth 137, 395–403 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Romano, R. A. et al. ΔNp63 knockout mice reveal its indispensable function as a grasp regulator of epithelial growth and differentiation. Growth 139, 772–782 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pattison, J. M. et al. Retinoic acid and BMP4 cooperate with p63 to change chromatin dynamics throughout floor epithelial dedication. Nat. Genet. 50, 1658–1665 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chikh, A. et al. Expression of GATA-3 in dermis and hair follicle: relationship to p63. Biochem. Biophys. Res. Commun. 361, 1–6 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ellis, C., Pai, G. S. & Wine Lee, L. Atypical aplasia cutis in affiliation with Xia Gibbs syndrome. Pediatr. Dermatol. 38, 533–535 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Jiang, Y. et al. The phenotypic spectrum of Xia-Gibbs syndrome. Am. J. Med. Genet. A 176, 1315–1326 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ritter, A. L. et al. Variable medical manifestations of Xia-Gibbs syndrome: findings of consecutively recognized instances at a single kids’s hospital. Am. J. Med. Genet. A 176, 1890–1896 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tchieu, J. et al. A modular platform for differentiation of human PSCs into all main ectodermal lineages. Cell Stem Cell 21, 399–410 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liang, Y. C. et al. Folding keratin gene clusters throughout pores and skin regional specification. Dev. Cell 53, 561–576 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kelly, O. G. & Melton, D. A. Induction and patterning of the vertebrate nervous system. Developments Genet. 11, 273–278 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liem, Okay. F., Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated indicators from epidermal ectoderm. Cell 82, 969–979 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Larsen, W. J. & Sherman, L. S. in Human Embryology third edn 85–102; 126–130 (Churchill Livingstone, 2002).

  • Hota, S. Okay. & Bruneau, B. G. ATP-dependent chromatin transforming throughout mammalian growth. Growth 143, 2882–2897 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pauli, A., Rinn, J. L. & Schier, A. F. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet. 12, 136–149 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, J. et al. Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol. 7, e1000119 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, L. et al. TFAP2C- and p63-dependent networks sequentially rearrange chromatin landscapes to drive human epidermal lineage dedication. Cell Stem Cell 24, 271–284 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, W. & Cornell, R. A. Redundant actions of Tfap2a and Tfap2c are required for neural crest induction and growth of different non-neural ectoderm derivatives in zebrafish embryos. Dev. Biol. 304, 338–354 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sebastiano, V. et al. Human COL7A1-corrected induced pluripotent stem cells for the therapy of recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 6, 264ra163 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chahrour, M. & Zoghbi, H. Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sarogni, P., Pallotta, M. M. & Musio, A. Cornelia de Lange syndrome: from molecular analysis to therapeutic method. J. Med. Genet. 57, 289–295 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ostapcuk, V. et al. Exercise-dependent neuroprotective protein recruits HP1 and CHD4 to manage lineage-specifying genes. Nature 557, 739–743 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Xia, F. et al. De novo truncating mutations in AHDC1 in people with syndromic expressive language delay, hypotonia, and sleep apnea. Am. J. Hum. Genet. 94, 784–789 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Díaz-Ordoñez, L., Ramirez-Montaño, D., Candelo, E., Cruz, S. & Pachajoa, H. Syndromic mental incapacity attributable to a novel truncating variant in AHDC1: a case report. Iran. J. Med. Sci. 44, 257–261 (2019).

    PubMed 

    Google Scholar 

  • Savic, D. et al. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res. 25, 1581–1589 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mumbach, M. R. et al. HiChIP: environment friendly and delicate evaluation of protein-directed genome structure. Nat. Strategies 13, 919–922 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ramanathan, M. et al. RNA-protein interplay detection in residing cells. Nat. Strategies 15, 207–212 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Roux, Okay. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Roux, Okay. J., Kim, D. I. & Burke, B. BioID: a display screen for protein-protein interactions. Curr. Protoc. Protein Sci. 2013, 19.23.1–19.23.14 (2013).

    Google Scholar 

  • Villaseñor, R. et al. ChromID identifies the protein interactome at chromatin marks. Nat. Biotechnol. 38, 728–736 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Saksouk, N. et al. Redundant mechanisms to type silent chromatin at pericentromeric areas depend on BEND3 and DNA methylation. Mol. Cell 56, 580–594 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP advanced counteracts chromatin looping at CTCF websites that emerged from SINE expansions in mouse. Cell 178, 1437–1451 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maurano, M. T. et al. Function of DNA methylation in modulating transcription issue occupancy. Cell Rep. 12, 1184–1195 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, M. F., Pressman, C., Dyer, R., Johnson, R. L. & Martin, J. F. Operate of Rieger syndrome gene in left-right asymmetry and craniofacial growth. Nature 401, 276–278 (1999).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Günschmann, C. et al. Insulin/IGF-1 controls epidermal morphogenesis through regulation of FoxO-mediated p63 inhibition. Dev. Cell 26, 176–187 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, A. et al. Deciphering rules of morphogenesis from temporal and spatial patterns on the integument. Dev. Dyn. 244, 905–920 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wolpert, L. Positional info and the spatial sample of mobile differentiation. J. Theor. Biol. 25, 1–47 (1969).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Jin, S. et al. Inference and evaluation of cell-cell communication utilizing CellChat. Nat. Commun. 12, 1088 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Niessen, M. T., Iden, S. & Niessen, C. M. The in vivo perform of mammalian cell and tissue polarity regulators—the best way to form and keep the epidermal barrier. J. Cell Sci. 125, 3501–3510 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Delaney, C. et al. Combinatorial prediction of marker panels from single‐cell transcriptomic knowledge. Mol. Syst. Biol. 15, e9005 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kurek, D., Garinis, G. A., van Doorninck, J. H., van der Wees, J. & Grosveld, F. G. Transcriptome and phenotypic evaluation reveals Gata3-dependent signalling pathways in murine hair follicles. Growth 134, 261–272 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaufman, C. Okay. et al. GATA-3: An sudden regulator of cell lineage dedication in pores and skin. Genes Dev. 17, 2108–2122 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bardhan, T. et al. Gata3 is required for the purposeful maturation of inside hair cells and their innervation within the mouse cochlea. J. Physiol. 597, 3389–3406 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Koch, P. J. et al. Focused disruption of the pemphigus vulgaris antigen (desmoglein 3) gene in mice causes lack of keratinocyte cell adhesion with a phenotype much like pemphigus vulgaris. J. Cell Biol. 137, 1091–1102 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cheng, X. et al. Two Chinese language Xia-Gibbs syndrome sufferers with partial development hormone deficiency. Mol. Genet. Genomic Med. 7, e00596 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yang, S. et al. Uncommon mutations in AHDC1 in sufferers with obstructive sleep apnea. Biomed. Res. Int. 2019, 5907361 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • García-Acero, M. & Acosta, J. Complete-exome sequencing identifies a de novo AHDC1 mutation in a Colombian affected person with Xia-Gibbs syndrome. Mol. Syndromol. 8, 308–312 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Qin, Y., Yang, S., Li, Okay. & Wei, Y. Excessive trait subsequent technology sequencing identifies AHDC1 as a novel candidate gene in obstructive sleep apnea. Sleep 41, A8–A9 (2018).

    Article 

    Google Scholar 

  • Cardoso-Dos-Santos, A. C. et al. Novel AHDC1 gene mutation in a Brazilian particular person: implications of Xia-Gibbs syndrome. Mol. Syndromol. 11, 24–29 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Billingham, R. E. & Silvers, W. Okay. Research on the conservation of epidermal specificies of pores and skin and sure mucosas in grownup mammals. J. Exp. Med. 125, 429–446 (1967).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dhouailly, D., Prin, F., Kanzler, B., Viallet, J. P. & Chuong, C. Molecular Foundation of Epithelial Appendage Morphogenesis (Landes Biosciences, 1998).

  • Wu, H. J. et al. Estrogen modulates mesenchyme-epidermis interactions within the grownup nipple. Growth 144, 1498–1509 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Helsmoortel, C. et al. A SWI/SNF-related autism syndrome attributable to de novo mutations in ADNP. Nat. Genet. 46, 380–384 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Khayat, M. M. et al. AHDC1 missense mutations in Xia-Gibbs syndrome. Hum. Genet. Genomics Adv. 2, 100049 (2021).

    Article 

    Google Scholar 

  • Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a way for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 2015, 21.29.1–21.29.9 (2015).

    Google Scholar 

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene listing enrichment evaluation instrument. BMC Bioinform. 14, 128 (2013).

    Article 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

    MathSciNet 
    MATH 

    Google Scholar 

  • Whyte, W. A. et al. Grasp transcription elements and mediator set up super-enhancers at key cell identification genes. Cell 153, 307–319 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry knowledge. Nat. Strategies 10, 730–736 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Choi, H. et al. SAINT: probabilistic scoring of affinity purificationg-mass spectrometry knowledge. Nat. Strategies 8, 70–73 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Servant, N. et al. HiC-Professional: an optimized and versatile pipeline for Hello-C knowledge processing. Genome Biol. 16, 259 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Haarhuis, J. H. I. et al. The cohesin launch issue WAPL restricts chromatin loop extension. Cell 169, 693–707 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification of serious chromatin contacts from HiChIP knowledge by FitHiChIP. Nat. Commun. 10, 4221 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leave a Reply