Brienen, R. J. W. et al. Lengthy-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and speedy biomass restoration in a terra firme forest within the Colombian Amazon. Ecology 98, 2538–2546 (2017).
Google Scholar
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Google Scholar
Powers, J. S. et al. A catastrophic tropical drought kills hydraulically weak tree species. Glob. Chang. Biol. 26, 3122–3133 (2020).
Google Scholar
Bennett, A. C. et al. Resistance of African tropical forests to an excessive local weather anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).
Google Scholar
Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).
Google Scholar
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a altering world. Science 368, (2020).
Pan, Y. et al. A big and chronic carbon sink on the planet’s forests. Science 333, 988–993 (2011).
Google Scholar
Matthews, H. D. et al. An built-in strategy to quantifying uncertainties within the remaining carbon price range. Commun. Earth Environ. 2, 7 (2021).
Google Scholar
Girardin, C. A. J. et al. Nature-based options can assist cool the planet—if we act now. Nature 593, 191–194 (2021).
Google Scholar
Friedlingstein, P. et al. Earth Syst. Sci. Knowledge 14, 1917–2005 (2022)
Choat, B. et al. Triggers of tree mortality below drought. Nature 558, 531–539 (2018).
Google Scholar
Rowland, L. et al. Demise from drought in tropical forests is triggered by hydraulics not carbon hunger. Nature 528, 119–122 (2015).
Google Scholar
Lloyd, J. & Farquhar, G. D. Results of rising temperatures and [CO2] on the physiology of tropical forest timber. Phil. Trans. R. Soc. B 363, 1811–1817 (2008).
Google Scholar
O’Sullivan, O. S. et al. Thermal limits of leaf metabolism throughout biomes. Glob. Chang. Biol. 23, 209–223 (2017).
Google Scholar
Grossiord, C. et al. Plant responses to rising vapor stress deficit. New Phytol. 226, 1550–1566 (2020).
Google Scholar
Rifai, S. W., Li, S. & Malhi, Y. Coupling of El Niño occasions and long-term warming results in pervasive local weather extremes within the terrestrial tropics. Environ. Res. Lett. 14, 105002 (2019).
Google Scholar
Rifai, S. W. et al. ENSO drives interannual variation of forest woody development throughout the tropics. Phil. Trans. R. Soc. B 373, 20170410 (2018).
Google Scholar
Smith, M. N. et al. Empirical proof for resilience of tropical forest photosynthesis in a hotter world. Nat. Crops 6, 1225–1230 (2020).
Google Scholar
Malhi, Y. et al. Exploring the probability and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).
Google Scholar
McDowell, N., Allen, C. D. & Anderson‐Teixeira, Ok. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).
Google Scholar
McDowell, N. et al. Mechanisms of plant survival and mortality throughout drought: why do some vegetation survive whereas others succumb to drought? New Phytol. 178, 719–739 (2008).
Google Scholar
Bauman, D. et al. Tropical tree development sensitivity to local weather is pushed by species intrinsic development price and leaf traits. Glob. Chang. Biol. 28, 1414–1432 (2022).
Google Scholar
Esquivel-Muelbert, A. et al. Tree mode of loss of life and mortality danger elements throughout Amazon forests. Nat. Commun. 11, 5515 (2020).
Google Scholar
Anderegg, W. R. L., Anderegg, L. D. L., Kerr, Ok. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry vary edges signifies that local weather stress exceeds species’ compensating mechanisms. Glob. Chang. Biol. 25, 3793–3802 (2019).
Google Scholar
Aguirre-Gutiérrez, J. et al. Drier tropical forests are inclined to purposeful modifications in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).
Google Scholar
Aguirre-Gutiérrez, J. et al. Lengthy-term droughts might drive drier tropical forests in direction of elevated purposeful, taxonomic and phylogenetic homogeneity. Nat. Comm. 11, 3346 (2020).
Google Scholar
Meir, P., Mencuccini, M. & Dewar, R. C. Drought-related tree mortality: addressing the gaps in understanding and prediction. New Phytol. 207, 28–33 (2015).
Google Scholar
Sullivan, M. J. P. et al. Lengthy-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
Google Scholar
Yuan, W. et al. Elevated atmospheric vapor stress deficit reduces world vegetation development. Sci. Adv. 5, eaax1396 (2019).
Google Scholar
McMahon, S. M., Arellano, G. & Davies, S. J. The significance and challenges of detecting modifications in forest mortality charges. Ecosphere 10, e02615 (2019).
Google Scholar
Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and restoration patterns. Ecol. Lett. 21, 1552–1560 (2018).
Google Scholar
Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so exhausting to foretell? Traits Ecol. Evol. 36, 520–532 (2021).
Google Scholar
Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).
Google Scholar
Aleixo, I. et al. Amazonian rainforest tree mortality pushed by local weather and purposeful traits. Nat. Clim. Change 9, 384–388 (2019).
Google Scholar
Lingenfelder, M. & Newbery, D. M. On the detection of dynamic responses in a drought-perturbed tropical rainforest in Borneo. Plant Ecol. 201, 267–290 (2009).
Google Scholar
McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Traits Ecol. Evol. 26, 523–532 (2011).
Google Scholar
Zuleta, D. et al. Particular person tree injury dominates mortality danger elements throughout six tropical forests. New Phytol. 233, 705–721 (2022).
Google Scholar
Fontes, C. G. et al. Dry and sizzling: the hydraulic penalties of a local weather change-type drought for Amazonian timber. Phil. Trans. R. Soc. B 373, 20180209 (2018).
Chave, J. et al. In direction of a worldwide wooden economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Google Scholar
Peters, J. M. R. et al. Dwelling on the sting: a continental-scale evaluation of forest vulnerability to drought. Glob. Chang. Biol. 27, 3620–3641 (2021).
Google Scholar
Yang, J., Cao, M. & Swenson, N. G. Why purposeful traits don’t predict tree demographic charges. Traits Ecol. Evol. 33, 326–336 (2018).
Google Scholar
Espírito-Santo, F. D. B. et al. Measurement and frequency of pure forest disturbances and the Amazon forest carbon steadiness. Nat. Commun. 5, 3434 (2014).
Google Scholar
Chambers, J. Q. et al. The steady-state mosaic of disturbance and succession throughout an old-growth Central Amazon forest panorama. Proc. Natl Acad. Sci. USA 110, 3949–3954 (2013).
Google Scholar
Rifai, S. W. et al. Panorama-scale penalties of differential tree mortality from catastrophic wind disturbance within the Amazon. Ecol. Appl. 26, 2225–2237 (2016).
Google Scholar
López, J., Approach, D. A. & Sadok, W. Systemic results of rising atmospheric vapor stress deficit on plant physiology and productiveness. Glob. Chang. Biol. 27, 1704–1720 (2021).
Google Scholar
Brando, P. M. et al. Abrupt will increase in Amazonian tree mortality on account of droughttextendashfire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).
Google Scholar
Phillips, O. L. et al. Sample and course of in Amazon tree turnover, 1976–2001. Phil. Trans. R. Soc. Lond. B 359, 381–407 (2004).
Google Scholar
Harris, R. M. B. et al. Organic responses to the press and pulse of local weather tendencies and excessive occasions. Nat. Clim. Change 8, 579–587 (2018).
Google Scholar
Andrus, R. A., Chai, R. Ok., Harvey, B. J., Rodman, Ok. C. & Veblen, T. T. Growing charges of subalpine tree mortality linked to hotter and drier summers. J. Ecol. 109, 2203–2218 (2021).
Google Scholar
Murphy, H. T., Bradford, M. G., Dalongeville, A., Ford, A. J. & Metcalfe, D. J. No proof for long-term will increase in biomass and stem density within the tropical rain forests of Australia. J. Ecol. 101, 1589–1597 (2013).
Google Scholar
Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, Ok. J. Bigger timber endure most throughout drought in forests worldwide. Nat. Crops 1, 15139 (2015).
Google Scholar
Chitra-Tarak, R. et al. Hydraulically-vulnerable timber survive on deep-water entry throughout droughts in a tropical forest. New Phytol. 231, 1798–1813 (2021).
Google Scholar
Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits clarify cross-species patterns of drought-induced tree mortality throughout the globe. Proc. Natl Acad. Sci. USA 113, 5024–5029 (2016).
Google Scholar
Taylor, T. C., Smith, M. N., Slot, M. & Feeley, Ok. J. The capability to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. Plant Cell Environ. 42, 2448–2457 (2019).
Google Scholar
Arellano, G., Zuleta, D. & Davies, S. J. Tree loss of life and injury: a standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).
Google Scholar
Bradford, M. G., Murphy, H. T., Ford, A. J., Hogan, D. L. & Metcalfe, D. J. Lengthy-term stem stock information from tropical rain forest plots in Australia. Ecology 95, 2362 (2014).
Google Scholar
Johnson, D. J. et al. Local weather delicate size-dependent survival in tropical timber. Nat. Ecol. Evol. 2, 1436–1442 (2018).
Google Scholar
Needham, J., Merow, C., Chang-Yang, C.-H., Caswell, H. & McMahon, S. M. Inferring forest destiny from demographic information: from very important charges to inhabitants dynamic fashions. Proc. Biol. Sci. 285, 20172050 (2018).
Google Scholar
Lewis, S. L. et al. Tropical forest tree mortality, recruitment and turnover charges: calculation, interpretation and comparability when census intervals range. J. Ecol. 92, 929–944 (2004).
Google Scholar
Reeves, J., Chen, J., Wang, X. L., Lund, R. & Lu, Q. Q. A evaluation and comparability of changepoint detection methods for local weather information. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).
Google Scholar
Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, Ok. Competitors-interaction landscapes for the joint response of forests to local weather change. Glob. Chang. Biol. 20, 1979–1991 (2014).
Google Scholar
Oliva, J., Stenlid, J. & Martínez-Vilalta, J. The impact of fungal pathogens on the water and carbon financial system of timber: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).
Google Scholar
Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree loss of life as an ecological course of. Bioscience 37, 550–556 (1987).
Google Scholar
Yanoviak, S. P. et al. Lightning is a significant trigger of enormous tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).
Google Scholar
Preisler, Y., Tatarinov, F., Grünzweig, J. M. & Yakir, D. Searching for the ‘level of no return’ within the sequence of occasions resulting in mortality of mature timber. Plant Cell Environ. 44, 1315–1328 (2020).
Google Scholar
Aragão, L. E. O. C. et al. Spatial patterns and fireplace response of current Amazonian droughts. Geophys. Res. Lett. 34, L07701 (2007).
Google Scholar
Malhi, Y. et al. The linkages between photosynthesis, productiveness, development and biomass in lowland Amazonian forests. Glob. Chang. Biol. 21, 2283–2295 (2015).
Google Scholar
Hutchinson, M. F., Xu, T., Kesteven, J. L., Marang, I. J. & Evans, B. J.ANUClimate v2.0, NCI Australia. https://doi.org/10.25914/60a10aa56dd1b (2021).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, Ok. C. TerraClimate, a high-resolution world dataset of month-to-month local weather and climatic water steadiness from 1958–2015. Sci. Knowledge 5, 170191 (2018).
Google Scholar
Carscadden, Ok. A. et al. Area of interest breadth: causes and penalties for ecology, evolution, and conservation. Q. Rev. Biol. 95, 179–214 (2020).
Google Scholar
Swenson, N. G. et al. A reframing of trait–demographic price analyses for ecology and evolutionary biology. Int. J. Plant Sci. 181, 33–43 (2020).
Google Scholar
Morueta-Holme, N. et al. Habitat space and local weather stability decide geographical variation in plant species vary sizes. Ecol. Lett. 16, 1446–1454 (2013).
Google Scholar
Brum, M. et al. Hydrological area of interest segregation defines forest construction and drought tolerance methods in a seasonal Amazon forest. J. Ecol. 107, 318–333 (2019).
Google Scholar
Chitra-Tarak, R. et al. The roots of the drought: hydrology and water uptake methods mediate forest-wide demographic response to precipitation. J. Ecol. 106, 1495–1507 (2018).
Google Scholar
Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to cut back sampling bias can enhance the efficiency of ecological area of interest fashions. Ecol. Modell. 275, 73–77 (2014).
Google Scholar
Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical mannequin of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).
Google Scholar
Duursma, R. A. Plantecophys—an R package deal for analysing and modelling leaf gasoline trade information. PLoS ONE 10, e0143346 (2015).
Google Scholar
De Kauwe, M. G. et al. A check of the ‘one-point methodology’ for estimating most carboxylation capability from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).
Google Scholar
Bloomfield, Ok. J. et al. The validity of optimum leaf traits modelled on environmental circumstances. New Phytol. 221, 1409–1423 (2019).
Google Scholar
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (CRC Press, 2020).
“RStan: the R interface to Stan.” R package deal model 2.21.2. http://mc-stan.org/ (Stan Improvement Staff, 2020).
Bürkner, P.-C. brms: An R package deal for Bayesian multilevel fashions utilizing Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar
R Core Staff. R: a language and surroundings for statistical computing. https://www.R-project.org/ (R Basis for Statistical Computing, 2021).
Dinerstein, E. et al. An ecoregion-based strategy to defending half the terrestrial realm. Bioscience 67, 534–545 (2017).
Google Scholar