Andrews, S. C. In Advances in Microbial Physiology vol. 40 (ed. Poole, R. Ok.) 281–351 (Educational, 1998).
Touati, D. Iron and oxidative stress in micro organism. Arch. Biochem. Biophys. 373, 1–6 (2000).
Google Scholar
Andrews, S. C., Robinson, A. Ok. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).
Google Scholar
Andrews, S. C. The ferritin-like superfamily: evolution of the organic iron storeman from a rubrerythrin-like ancestor. Biochim. Biophys. Acta 1800, 691–705 (2010).
Google Scholar
Nichols, R. J., Cassidy-Amstutz, C., Chaijarasphong, T. & Savage, D. F. Encapsulins: molecular biology of the shell. Crit. Rev. Biochem. Mol. Biol. 52, 583–594 (2017).
Google Scholar
Byrne, M. E. et al. Desulfovibrio magneticus RS-1 incorporates an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc. Natl Acad. Sci. USA 107, 12263–12268 (2010).
Google Scholar
Glasauer, S., Langley, S. & Beveridge, T. J. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295, 117–119 (2002).
Google Scholar
Sakaguchi, T., Arakaki, A. & Matsunaga, T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol. 52, 215–221 (2002).
Google Scholar
Grant, C. R., Rahn-Lee, L., LeGault, Ok. N. & Komeili, A. Genome enhancing technique for the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1. Appl. Env. Microbiol. 84, e01724-18 (2018).
Google Scholar
Rahn-Lee, L. et al. A genetic technique for probing the practical range of magnetosome formation. PLoS Genet. 11, e1004811 (2015).
Google Scholar
Argüello, J. M., Eren, E. & González-Guerrero, M. The construction and performance of heavy metallic transport P1B-ATPases. BioMetals 20, 233 (2007).
Google Scholar
Smith, A. T., Smith, Ok. P. & Rosenzweig, A. C. Range of the metal-transporting P1B-type ATPases. J. Biol. Inorg. Chem. 19, 947–960 (2014).
Google Scholar
Chan, H. et al. The P-type ATPase superfamily. J. Mol. Microbiol. Biotechnol. 19, 5–104 (2010).
Google Scholar
Padilla-Benavides, T., Lengthy, J. E., Raimunda, D., Sassetti, C. M. & Argüello, J. M. A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. J. Biol. Chem. 288, 11334–11347 (2013).
Google Scholar
Botella, H. et al. Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259 (2011).
Google Scholar
Russ, W. P. & Engelman, D. M. The GxxxG motif: a framework for transmembrane helix–helix affiliation. J. Mol. Biol. 296, 911–919 (2000).
Google Scholar
Unterreitmeier, S. et al. Phenylalanine promotes interplay of transmembrane domains through GxxxG motifs. J. Mol. Biol. 374, 705–718 (2007).
Google Scholar
Jarsch, I. Ok., Daste, F. & Gallop, J. L. Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214, 375–387 (2016).
Google Scholar
Glasauer, S. et al. Blended-valence cytoplasmic iron granules are linked to anaerobic respiration. Appl. Environ. Microbiol. 73, 993–996 (2007).
Google Scholar
VerBerkmoes, N. C. et al. Willpower and comparability of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris below its main metabolic states. J. Proteome Res. 5, 287–298 (2006).
Google Scholar
Rey, F. E. & Harwood, C. S. FixK, a worldwide regulator of microaerobic development, controls photosynthesis in Rhodopseudomonas palustris. Mol. Microbiol. 75, 1007–1020 (2010).
Google Scholar
Bose, A. & Newman, D. Ok. Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the worldwide regulator, FixK. Mol. Microbiol. 79, 63–75 (2011).
Google Scholar
Amor, M. et al. Magnetotactic micro organism accumulate a big pool of iron distinct from their magnetite crystals. Appl. Environ. Microbiol. 86, e01278-20 (2020).
Google Scholar
Abdul-Tehrani, H. et al. Ferritin mutants of Escherichia coli are iron poor and development impaired, and fur mutants are iron poor. J. Bacteriol. 181, 1415–1428 (1999).
Google Scholar
Rolfe, M. D. et al. Lag section is a definite development section that prepares micro organism for exponential development and includes transient metallic accumulation. J. Bacteriol. 194, 686–701 (2012).
Google Scholar
Bender, Ok. S. et al. Evaluation of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl. Environ. Microbiol. 73, 5389–5400 (2007).
Google Scholar
Uebe, R. et al. Deletion of a fur-like gene impacts iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J. Bacteriol. 192, 4192–4204 (2010).
Google Scholar
Wang, Q. et al. Physiological traits of Magnetospirillum gryphiswaldense MSR-1 that management cell development below high-iron and low-oxygen situations. Sci. Rep. 7, 2800 (2017).
Google Scholar
Pereira, P. M. et al. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental situations. Arch. Microbiol. 189, 451–461 (2008).
Google Scholar
Zhou, A. et al. Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ. Microbiol. 12, 2645–2657 (2010).
Google Scholar
Caffrey, S. M. & Voordouw, G. Impact of sulfide on development physiology and gene expression of Desulfovibrio vulgaris Hildenborough. Antonie Van Leeuwenhoek 97, 11–20 (2010).
Google Scholar
Ho, T. D. & Ellermeier, C. D. Ferric uptake regulator Fur management of putative iron acquisition techniques in Clostridium difficile. J. Bacteriol. 197, 2930–2940 (2015).
Google Scholar
Jiao, Y. & Newman, D. Ok. The pio operon is crucial for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).
Google Scholar
Kim, M.-Ok. & Harwood, C. S. Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol. Lett. 83, 199–203 (1991).
Google Scholar
Guan, G. et al. PfeT, a P1B4-type ATPase, effluxes ferrous iron and protects Bacillus subtilis towards iron intoxication. Mol. Microbiol. 98, 787–803 (2015).
Google Scholar
Komeili, A., Vali, H., Beveridge, T. J. & Newman, D. Ok. Magnetosome vesicles are current earlier than magnetite formation, and MamA is required for his or her activation. Proc. Natl Acad. Sci. USA 101, 3839–3844 (2004).
Google Scholar
Murat, D., Quinlan, A., Vali, H. & Komeili, A. Complete genetic dissection of the magnetosome gene island reveals the step-wise meeting of a prokaryotic organelle. Proc. Natl Acad. Sci. USA 107, 5593–5598 (2010).
Google Scholar
Rey, F. E., Oda, Y. & Harwood, C. S. Regulation of uptake hydrogenase and results of hydrogen utilization on gene expression in Rhodopseudomonas palustris. J. Bacteriol. 188, 6143–6152 (2006).
Google Scholar
Clark, I. C. et al. Artificial and evolutionary development of a chlorate-reducing Shewanella oneidensis MR-1. mBio 6, e00282-15 (2015).
Google Scholar
Plumb, R. S. et al. UPLC/MSE: a brand new strategy for producing molecular fragment info for biomarker construction elucidation. Fast Commun. Mass Spectrom. 20, 1989–1994 (2006).
Google Scholar
Geromanos, S. J., Hughes, C., Ciavarini, S., Vissers, J. P. C. & Langridge, J. I. Utilizing ion purity scores for enhancing quantitative accuracy and precision in complicated proteomics samples. Anal. Bioanal. Chem. 404, 1127–1139 (2012).
Google Scholar
Shliaha, P. V., Bond, N. J., Gatto, L. & Lilley, Ok. S. Results of touring wave ion mobility separation on knowledge unbiased acquisition in proteomics research. J. Proteome Res. 12, 2323–2339 (2013).
Google Scholar
Levin, Y. & Bahn, S. LC–MS/MS in proteomics. Strategies Mol. Biol 658, 217–231 (2010).
Google Scholar
Neilson, Ok. A. et al. Much less label, extra free: approaches in label-free quantitative mass spectrometry. Proteomics 11, 535–553 (2011).
Google Scholar
Nahnsen, S., Bielow, C., Reinert, Ok. & Kohlbacher, O. Instruments for label-free peptide quantification. Mol. Cell. Proteomics 12, 549–556 (2013).
Google Scholar
Gentle, S. H. et al. A flavin-based extracellular electron switch mechanism in numerous Gram-positive micro organism. Nature 562, 140–144 (2018).
Google Scholar
Engström, P. et al. Evasion of autophagy mediated by Rickettsia floor protein OmpB is vital for virulence. Nat. Microbiol. 4, 2538–2551 (2019).
Google Scholar
Pinals, R. L. et al. Quantitative protein corona composition and dynamics on carbon nanotubes in organic environments. Angew. Chem. Int. Ed. 59, 23668–23677 (2020).
Google Scholar
Engström, P., Burke, T. P., Tran, C. J., Iavarone, A. T. & Welch, M. D. Lysine methylation shields an intracellular pathogen from ubiquitylation and autophagy. Sci. Adv. 7, eabg2517 (2021).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, Ok. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).
Google Scholar
Atolia, E. et al. Environmental and physiological elements affecting high-throughput measurements of bacterial development. mBio 11, e01378-20 (2020).
Google Scholar
Chen, I.-M. A. et al. IMG/M v.5.0: an built-in knowledge administration and comparative evaluation system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2018).
Google Scholar
Kumar, S., Nei, M., Dudley, J. & Tamura, Ok. MEGA: a biologist-centric software program for evolutionary evaluation of DNA and protein sequences. Transient. Bioinform. 9, 299–306 (2008).
Google Scholar
Castresana, J. Collection of conserved blocks from a number of alignments for his or her use in phylogenetic evaluation. Mol. Biol. Evol. 17, 540–552 (2000).
Google Scholar
Stamatakis, A. RAxML model 8: a instrument for phylogenetic evaluation and post-analysis of huge phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: good mannequin choice in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: current updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
Google Scholar
Steinegger, M. & Söding, J. MMseqs2 allows delicate protein sequence looking for the evaluation of large knowledge units. Nat. Biotechnol. 35, 1026–1028 (2017).
Google Scholar
Markiel, S. P. et al. Cytoscape: a software program setting for built-in fashions of biomolecular interplay networks. Genome Res. 13, 2498–2504 (2003).
Google Scholar
Kanehisa, M. & Goto, S. Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).
Google Scholar
Morris, J. H. et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinf. 12, 436 (2011).
Google Scholar
Sievers, F. et al. Quick, scalable technology of high-quality protein a number of sequence alignments utilizing Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
Google Scholar
Finn, R. D., Clements, J. & Eddy, S. R. HMMER net server: interactive sequence similarity looking out. Nucleic Acids Res. 39, W29–W37 (2011).
Google Scholar
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Google Scholar
Bernsel, A., Viklund, H., Hennerdal, A. & Elofsson, A. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 37, W465–W468 (2009).
Google Scholar
Crooks, G. E. WebLogo: a sequence brand generator. Genome Res. 14, 1188–1190 (2004).
Google Scholar
Perez-Riverol, Y. et al. The PRIDE database and associated instruments and assets in 2019: enhancing help for quantification knowledge. Nucleic Acids Res. 47, D442–D450 (2019).
Google Scholar