Hmx gene conservation identifies the origin of vertebrate cranial ganglia


  • Northcutt, R. G. & Gans, C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q. Rev. Biol. 58, 1–28 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Horie, R. et al. Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature 560, 228–232 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Stolfi, A., Ryan, Okay., Meinertzhagen, I. A. & Christiaen, L. Migratory neuronal progenitors come up from the neural plate borders in tunicates. Nature 527, 371–374 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Shimeld, S. M. & Holland, P. W. Vertebrate improvements. Proc. Natl Acad. Sci. USA 97, 4449–4452 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Patthey, C. et al. Identification of molecular signatures particular for distinct cranial sensory ganglia within the creating chick. Neural Dev. 11, 3 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Adamska, M. et al. 5 Nkx5 genes present differential expression patterns in anlagen of sensory organs in medaka: perception into the evolution of the gene household. Dev. Genes Evol. 211, 338–349 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, W., Lo, P., Frasch, M. & Lufkin, T. Hmx: an evolutionary conserved homeobox gene household expressed within the creating nervous system in mice and Drosophila. Mech. Dev. 99, 123–137 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Feng, Y. & Xu, Q. Pivotal position of hmx2 and hmx3 in zebrafish interior ear and lateral line growth. Dev. Biol. 339, 507–518 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kelly, L. E. & El-Hodiri, H. M. Xenopus laevis Nkx5.3 and sensory organ homeobox (SOHo) are expressed in creating sensory organs and ganglia of the top and anterior trunk. Dev. Genes Evol. 226, 423–428 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kiernan, A. E., Nunes, F., Wu, D. Okay. & Fekete, D. M. The expression area of two associated homeobox genes defines a compartment within the rooster interior ear which may be concerned in semicircular canal formation. Dev. Biol. 191, 215–229 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Quina, L. A., Tempest, L., Hsu, Y. W., Cox, T. C. & Turner, E. E. Hmx1 is required for the conventional growth of somatosensory neurons within the geniculate ganglion. Dev. Biol. 365, 152–163 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Takahashi, H., Shintani, T., Sakuta, H. & Noda, M. CBF1 controls the retinotectal topographical map alongside the anteroposterior axis by means of a number of mechanisms. Growth 130, 5203–5215 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bayramov, A. V., Martynova, N. Y., Eroshkin, F. M., Ermakova, G. V. & Zaraisky, A. G. The homeodomain-containing transcription issue X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 throughout the Xenopus laevis forebrain growth. Mech. Dev. 121, 1425–1441 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Takatori, N. et al. Complete survey and classification of homeobox genes within the genome of amphioxus, Branchiostoma floridae. Dev. Genes Evol. 218, 579–590 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wada, S. et al. A genomewide survey of developmentally related genes in Ciona intestinalis. II. Genes for homeobox transcription components. Dev. Genes Evol. 213, 222–234 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ryan, Okay., Lu, Z. & Meinertzhagen, I. A. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness within the mind of a chordate sibling. eLife 5, e16962 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, W., Chan, E. Okay., Baron, S., Van de Water, T. & Lufkin, T. Hmx2 homeobox gene management of murine vestibular morphogenesis. Growth 128, 5017–5029 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, W., Grimmer, J. F., Van De Water, T. R. & Lufkin, T. Hmx2 and Hmx3 homeobox genes direct growth of the murine interior ear and hypothalamus and will be functionally changed by Drosophila Hmx. Dev. Cell 7, 439–453 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, W., Van De Water, T. & Lufkin, T. Inside ear and maternal reproductive defects in mice missing the Hmx3 homeobox gene. Growth 125, 621–634 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tang, W. J., Chen, J. S. & Zeller, R. W. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev. Biol. 378, 183–193 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sharma, S., Wang, W. & Stolfi, A. Single-cell transcriptome profiling of the Ciona larval mind. Dev. Biol. 448, 226–236 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, Okay. et al. Regulation of neurogenesis by FGF signaling and neurogenin within the invertebrate chordate ciona. Entrance. Cell Dev. Biol. 8, 477 (2020).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Chacha, P. P. et al. Neuronal identities derived by misexpression of the POU IV sensory determinant in a protovertebrate. Proc. Natl Acad. Sci. USA 119, e2118817119 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Brozovic, M. et al. ANISEED 2017: extending the built-in ascidian database to the exploration and evolutionary comparability of genome-scale datasets. Nucleic Acids Res. 46, D718–D725 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Doglio, L. et al. Parallel evolution of chordate cis-regulatory code for growth. PLoS Genet. 9, e1003904 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • McEwen, G. Okay. et al. Early evolution of conserved regulatory sequences related to growth in vertebrates. PLoS Genet. 5, e1000762 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Shimeld, S. M. & Donoghue, P. C. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Growth 139, 2091–2099 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parker, H. J., Bronner, M. E. & Krumlauf, R. A Hox regulatory community of hindbrain segmentation is conserved to the bottom of vertebrates. Nature 514, 490–493 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Scerbo, P. & Monsoro-Burq, A. H. The vertebrate-specific VENTX/NANOG gene empowers neural crest with ectomesenchyme potential. Sci. Adv. 6, eaaz1469 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Zalc, A. et al. Reactivation of the pluripotency program precedes formation of the cranial neural crest. Science 371, eabb4776 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mazet, F. et al. Molecular proof from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev. Biol. 282, 494–508 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roure, A., Lemaire, P. & Darras, S. An otx/nodal regulatory signature for posterior neural growth in ascidians. PLoS Genet. 10, e1004548 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Holland, L. Z. Tunicates. Curr. Biol. 26, R146–R152 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brunetti, R. et al. Morphological proof that the molecularly decided Ciona intestinalis sort A and kind B are totally different species: Ciona robusta and Ciona intestinalis. J. Zool. Syst. Evol. Res. 53, 186–193 (2015).

    Article 

    Google Scholar 

  • Adameyko, I. et al. Schwann cell precursors from nerve innervation are a mobile origin of melanocytes in pores and skin. Cell 139, 366–379 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Adamska, M. et al. Inside ear and lateral line expression of a zebrafish Nkx5-1 gene and its downregulation within the ears of FGF8 mutant, ace. Mech. Dev. 97, 161–165 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Apostolova, G. et al. Neurotransmitter phenotype-specific expression modifications in creating sympathetic neurons. Mol. Cell. Neurosci. 35, 397–408 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bober, E., Baum, C., Braun, T. & Arnold, H. H. A novel NK-related mouse homeobox gene: expression in central and peripheral nervous constructions throughout embryonic growth. Dev. Biol. 162, 288–303 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boisset, G. & Schorderet, D. F. Zebrafish hmx1 promotes retinogenesis. Exp. Eye Res. 105, 34–42 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Herbrand, H. et al. Two regulatory genes, cNkx5-1 and cPax2, present totally different responses to native alerts throughout otic placode and vesicle formation within the chick embryo. Growth 125, 645–654 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Munroe, R. J. et al. Mouse H6 homeobox 1 (Hmx1) mutations trigger cranial abnormalities and lowered physique mass. BMC Dev. Biol 9, 27 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Quina, L. A. et al. Deletion of a conserved regulatory component required for Hmx1 expression in craniofacial mesenchyme within the dumbo rat: a newly recognized reason behind congenital ear malformation. Dis. Mannequin Mech. 5, 812–822 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartwell, R. D. et al. Anteroposterior patterning of the zebrafish ear by means of Fgf- and Hh-dependent regulation of hmx3a expression. PLoS Genet. 15, e1008051 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Growth 142, 1113–1124 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lara-Ramirez, R., Poncelet, G., Patthey, C. & Shimeld, S. M. The construction, splicing, synteny and expression of lamprey COE genes and the evolution of the COE gene household in chordates. Dev. Genes Evol. 227, 319–338 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith, J. J. et al. Sequencing of the ocean lamprey (Petromyzon marinus) genome gives insights into vertebrate evolution. Nat. Genet. 45, 415–421 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, J. J. et al. The ocean lamprey germline genome gives insights into programmed genome rearrangement and vertebrate evolution. Nat. Genet. 50, 270–277 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mehta, T. Okay. et al. Proof for a minimum of six Hox clusters within the Japanese lamprey (Lethenteron japonicum). Proc. Natl Acad. Sci. USA 110, 16044–16049 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Woolfe, A. et al. CONDOR: a database useful resource of developmentally related conserved non-coding parts. BMC Dev. Biol. 7, 100 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Edgar, R. C. MUSCLE: a number of sequence alignment with excessive accuracy and excessive throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stamatakis, A. RAxML model 8: a instrument for phylogenetic evaluation and post-analysis of huge phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marletaz, F. et al. Amphioxus useful genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Lara-Ramirez, R., Patthey, C. & Shimeld, S. M. Characterization of two neurogenin genes from the brook lamprey Lampetra planeri and their expression within the lamprey nervous system. Dev. Dyn. 244, 1096–1108 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Boorman, C. J. & Shimeld, S. M. Pitx homeobox genes in Ciona and amphioxus present left–proper asymmetry is a conserved chordate character and outline the ascidian adenohypophysis. Evol. Dev. 4, 354–365 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fuentes, M. et al. Insights into spawning habits and growth of the European amphioxus (Branchiostoma lanceolatum). J. Exp. Zool. B 308, 484–493 (2007).

    Article 

    Google Scholar 

  • Fuentes, M. et al. Preliminary observations on the spawning circumstances of the European amphioxus (Branchiostoma lanceolatum) in captivity. J. Exp. Zool. B 302, 384–391 (2004).

    Article 

    Google Scholar 

  • Holland, P. W. H. Wholemount in situ hybridization to amphioxus embryos. Strategies Mol. Biol. 97, 641–644 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Parker, H. J., Sauka-Spengler, T., Bronner, M. & Elgar, G. A reporter assay in lamprey embryos reveals each useful conservation and elaboration of vertebrate enhancers. PLoS ONE 9, e85492 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Corbo, J. C., Levine, M. & Zeller, R. W. Characterization of a notochord-specific enhancer from the Brachyury promoter area of the ascidian, Ciona intestinalis. Growth 124, 589–602 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nakamura, M. J., Terai, J., Okubo, R., Hotta, Okay. & Oka, Okay. Three-dimensional anatomy of the Ciona intestinalis tailbud embryo at single-cell decision. Dev. Biol. 372, 274–284 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence information. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harafuji, N., Keys, D. N. & Levine, M. Genome-wide identification of tissue-specific enhancers within the Ciona tadpole. Proc. Natl Acad. Sci. USA 99, 6802–6805 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Chen, W. C. et al. Dissection of a Ciona regulatory component reveals complexity of cross-species enhancer exercise. Dev. Biol. 390, 261–272 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kari, W., Zeng, F., Zitzelsberger, L., Will, J. & Rothbacher, U. Embryo microinjection and electroporation within the chordate Ciona intestinalis. J. Vis. Exp. 16, 54313 (2016).

    Google Scholar 

  • Stolfi, A., Gandhi, S., Salek, F. & Christiaen, L. Tissue-specific genome modifying in Ciona embryos by CRISPR–Cas9. Growth 141, 4115–4120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leave a Reply