Lewis, R. L., Howes, A. & Singh, S. Computational rationality: linking mechanism and conduct by way of bounded utility maximization. High. Cogn. Sci. 6, 279–311 (2014).
Google Scholar
Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive sources: ranges of study between the computational and the algorithmic. High. Cogn. Sci. 7, 217–229 (2015).
Google Scholar
Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: a converging paradigm for intelligence in brains, minds, and machines. Science 349, 273–278 (2015).
Google Scholar
Newell, A. & Simon, H. A. Human Drawback Fixing (Prentice Corridor, 1972).
Russell, S. & Norvig, P. Synthetic Intelligence: A Fashionable Method third edn (Prentice Corridor, 2009).
Keramati, M., Smittenaar, P., Dolan, R. J. & Dayan, P. Adaptive integration of habits into depth-limited planning defines a habitual-goal–directed spectrum. Proc. Natl Acad. Sci. USA 113, 12868–12873 (2016).
Google Scholar
Huys, Q. J. M. et al. Bonsai timber in your head: how the Pavlovian system sculpts goal-directed selections by pruning choice timber. PLoS Comput. Biol. 8, e1002410 (2012).
Google Scholar
Huys, Q. J. M. et al. Interaction of approximate planning methods. Proc. Natl Acad. Sci. USA 112, 3098–3103 (2015).
Google Scholar
Callaway, F. et al. Rational use of cognitive sources in human planning. Nat. Hum. Behav. https://doi.org/10.1038/s41562-022-01332-8 (2022).
Google Scholar
Sezener, C. E., Dezfouli, A. & Keramati, M. Optimizing the depth and the route of potential planning utilizing info values. PLoS Comput. Biol. 15, e1006827 (2019).
Google Scholar
Pezzulo, G., Donnarumma, F., Maisto, D. & Stoianov, I. Planning at choice time and within the background throughout spatial navigation. Curr. Opin. Behav. Sci. 29, 69–76 (2019).
Miller, E. Ok. & Cohen, J. D. An integrative idea of prefrontal cortex perform. Ann. Rev. Neurosci. 24, 167–202 (2001).
Google Scholar
Shenhav, A., Botvinick, M. M. & Cohen, J. D. The anticipated worth of management: an integrative idea of anterior cingulate cortex perform. Neuron 79, 217–240 (2013).
Google Scholar
Shenhav, A. et al. Towards a rational and mechanistic account of psychological effort. Ann. Rev. Neurosci. 40, 99–124 (2017).
Google Scholar
Norman, D. A. & Shallice, T. in Consciousness and Self-Regulation (eds Davidson, R. J. et al.) 1–18 (Plenum Press, 1986).
Holland, J. H., Holyoak, Ok. J., Nisbett, R. E. & Thagard, P. R. Induction: Processes of Inference, Studying, and Discovery (MIT Press, 1989).
Newell, A. & Simon, H. A. Pc science as empirical inquiry: symbols and search. Commun. ACM 19, 113–126 (1976).
Google Scholar
Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competitors between prefrontal and dorsolateral striatal methods for behavioral management. Nat. Neurosci. 8, 1704–1711 (2005).
Google Scholar
Gläscher, J., Daw, N., Dayan, P. & O’Doherty, J. P. States versus rewards: dissociable neural prediction error alerts underlying model-based and model-free reinforcement studying. Neuron 66, 585–595 (2010).
Google Scholar
Ramkumar, P. et al. Chunking as the results of an effectivity computation trade-off. Nat. Commun. 7, 12176 (2016).
Google Scholar
Barsalou, L. W. Advert hoc classes. Mem. Cogn. 11, 211–227 (1983).
Google Scholar
Simon, H. A. The purposeful equivalence of drawback fixing abilities. Cogn. Psychol. 7, 268–288 (1975).
Brooks, R. A. Intelligence with out illustration. Artif. Intell. 47, 139–159 (1991).
Puterman, M. L. Markov Determination Processes: Discrete Stochastic Dynamic Programming (John Wiley & Sons, 1994).
Bellman, R. Dynamic Programming (Princeton Univ. Press, 1957).
Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic interplay between reinforcement studying and a spotlight in multidimensional environments. Neuron 93, 451–463 (2017).
Google Scholar
Hinton, G. E. Coaching merchandise of specialists by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).
Whiteley, L. & Sahani, M. Consideration in a Bayesian framework. Entrance. Hum. Neurosci. 6, 100 (2012).
Google Scholar
Lieder, F. & Griffiths, T. L. Useful resource-rational evaluation: understanding human cognition because the optimum use of restricted computational sources. Behav. Mind Sci. 43, e1 (2020).
Yoo, A. H., Klyszejko, Z., Curtis, C. E. & Ma, W. J. Strategic allocation of working reminiscence useful resource. Sci. Rep. 8, 16162 (2018).
Google Scholar
Grünwald, P. Mannequin choice based mostly on minimal description size. J. Math. Psychol. 44, 133–152 (2000).
Google Scholar
Gabaix, X. A sparsity-based mannequin of bounded rationality. Q. J. Econ. 129, 1661–1710 (2014).
Google Scholar
Marr, D. Imaginative and prescient: A Computational Investigation into the Human Illustration and Processing of Visible Info (W. H. Freeman, 1982).
Anderson, J. R. The Adaptive Character of Thought (Lawrence Erlbaum Associates, 1990).
Gershman, S. J. The successor illustration: its computational logic and neural substrates. J. Neurosci. 38, 7193–7200 (2018).
Google Scholar
Stachenfeld, Ok. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).
Google Scholar
Tversky, B. & Hemenway, Ok. Objects, components, and classes. J. Exp. Psychol. 113, 169–193 (1984).
Google Scholar
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How one can develop a thoughts: statistics, construction, and abstraction. Science 331, 1279–1285 (2011).
Google Scholar
Nassar, M. R. & Frank, M. J. Taming the beast: extracting generalizable information from computational fashions of cognition. Curr. Opin. Behav. Sci. 11, 49–54 (2016).
Google Scholar
Sutton, R. S. & Barto, A. G. Reinforcement Studying: An Introduction (MIT Press, 2018).
Parr, R. & Russell, S. in Proc. Advances in Neural Info Processing Techniques (eds Jordan, M. I. et al.) 10 (MIT Press, 1997).
Virtanen, P. et al. SciPy 1.0: basic algorithms for scientific computing in Python. Nat. Strategies 17, 261–272 (2020).
Google Scholar
Howard, R. A. Dynamic Programming and Markov Processes (MIT Press, 1960).
Barto, A. G., Bradtke, S. J. & Singh, S. P. Studying to behave utilizing real-time dynamic programming. Artif. Intell. 72, 81–138 (1995).
Bonet, B. & Geffner, H. Labeled RTDP: bettering the convergence of real-time dynamic programming. In Proc. Worldwide Convention on Planning and Automated Scheduling Vol. 3 (ed. Giunchiglia, E.) 12–21 (AAAI Press, 2003).
Hansen, E. A. & Zilberstein, S. LAO∗: a heuristic search algorithm that finds options with loops. Artif. Intell. 129, 35–62 (2001).
Google Scholar
Hart, P. E., Nilsson, N. J. & Raphael, B. A proper foundation for the heuristic willpower of minimal value paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968).
Momennejad, I. et al. The successor illustration in human reinforcement studying. Nat. Hum. Behav. 1, 680–692 (2017).
Google Scholar
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Google Scholar
Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J. & Daw, N. D. Predictive representations can hyperlink model-based reinforcement studying to model-free mechanisms. PLoS Comput. Biol. 13, e1005768 (2017).
Google Scholar
Solway, A. et al. Optimum behavioral hierarchy. PLoS Comput. Biol. 10, e1003779 (2014).
Google Scholar
Shi, J. & Malik, J. Normalized cuts and picture segmentation. IEEE Trans. Sample Anal. Mach. Intell. 22, 888–905 (2000).
Gureckis, T. M. et al. psiTurk: an open-source framework for conducting replicable behavioral experiments on-line. Behav. Res. Strategies 48, 829–842 (2016).
Google Scholar
De Leeuw, J. R. jsPsych: a JavaScript library for creating behavioral experiments in an online browser. Behav. Res. Strategies 47, 1–12 (2015).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Becoming linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).
The rpy2 Contributors. rpy2 model 3.3.6. (2020); https://rpy2.github.io/