Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. & Kuperwasser, C. Phenotypic plasticity: driver of most cancers initiation, development, and remedy resistance. Cell Stem Cell 24, 65–78 (2019).
Google Scholar
Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in most cancers development and response to immunotherapy. Nat. Med. 27, 212–224 (2021).
Google Scholar
Lüönd, F., Tiede, S. & Christofori, G. Breast most cancers for example of tumour heterogeneity and tumour cell plasticity throughout malignant development. Br. J. Most cancers 125, 164–175 (2021).
Google Scholar
Bergers, G. & Fendt, S. M. The metabolism of most cancers cells throughout metastasis. Nat. Rev. Most cancers 21, 162–180 (2021).
Google Scholar
Prasetyanti, P. R. & Medema, J. P. Intra-tumor heterogeneity from a most cancers stem cell perspective. Mol. Most cancers 16, 41 (2017).
Google Scholar
Pastushenko, I. & Blanpain, C. EMT transition states throughout tumor development and metastasis. Developments Cell Biol. 29, 212–226 (2019).
Google Scholar
Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).
Google Scholar
Possemato, R. et al. Practical genomics reveal that the serine synthesis pathway is important in breast most cancers. Nature 476, 346–350 (2011).
Google Scholar
Rinaldi, G. et al. In vivo proof for serine biosynthesis-defined sensitivity of lung metastasis, however not of major breast tumors, to mTORC1 inhibition. Mol. Cell 81, 386–397 (2021).
Google Scholar
Ngo, B. et al. Restricted environmental serine and glycine confer mind metastasis sensitivity to PHGDH inhibition. Most cancers Discov. 10, 1352–1373 (2020).
Google Scholar
Geeraerts, S. L. et al. Repurposing the antidepressant sertraline as SHMT inhibitor to suppress serine/glycine synthesis addicted breast tumor development. Mol. Most cancers Ther. 20, 50–63 (2020).
Google Scholar
Pacold, M. E. et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit destiny. Nat. Chem. Biol. 12, 452–458 (2016).
Google Scholar
Schmidt, J. M. et al. Stem-cell-like properties and epithelial plasticity come up as steady traits after transient Twist1 activation. Cell Rep. 10, 131–139 (2015).
Google Scholar
Noh, S., Kim, D. H., Jung, W. H. & Koo, J. S. Expression ranges of serine/glycine metabolism-related proteins in triple unfavourable breast most cancers tissues. Tumour Biol. 35, 4457–4468 (2014).
Google Scholar
Pascual, G. et al. Focusing on metastasis-initiating cells by the fatty acid receptor CD36. Nature 541, 41–45 (2017).
Google Scholar
Oshimori, N., Oristian, D. & Fuchs, E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160, 963–976 (2015).
Google Scholar
Margarido, A. S., Bornes, L., Vennin, C. & van Rheenen, J. Mobile plasticity throughout metastasis: new insights offered by intravital microscopy. Chilly Spring Harb. Perspect. Med. 10, a037267 (2020).
Beerling, E., Oosterom, I., Voest, E., Lolkema, M. & van Rheenen, J. Intravital characterization of tumor cell migration in pancreatic most cancers. IntraVital 5, e1261773 (2016).
Google Scholar
Kariya, Y., Oyama, M., Suzuki, T. & Kariya, Y. αvβ3 Integrin induces partial EMT impartial of TGF-β signaling. Commun. Biol. 4, 490 (2021).
Google Scholar
Mori, S. et al. Enhanced expression of integrin αvβ3 induced by TGF-β is required for the enhancing impact of fibroblast development issue 1 (FGF1) in TGF-β-induced epithelial-mesenchymal transition (EMT) in mammary epithelial cells. PLoS ONE 10, e0137486 (2015).
Google Scholar
Seguin, L. et al. An integrin β3–KRAS–RalB complicated drives tumour stemness and resistance to EGFR inhibition. Nat. Cell Biol. 16, 457–468 (2014).
Google Scholar
Bellahcène, A., Castronovo, V., Ogbureke, Ok. U., Fisher, L. W. & Fedarko, N. S. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in most cancers. Nat. Rev. Most cancers 8, 212–226 (2008).
Google Scholar
Janik, M. E., Lityńska, A. & Vereecken, P. Cell migration—the position of integrin glycosylation. Biochim. Biophys. Acta 1800, 545–555 (2010).
Google Scholar
Pocheć, E. et al. Aberrant glycosylation of αvβ3 integrin is related to melanoma development. Anticancer Res. 35, 2093–2103 (2015).
Kremser, M. E. et al. Characterisation of α3β1 and αvβ3 integrin N-oligosaccharides in metastatic melanoma WM9 and WM239 cell traces. Biochim. Biophys. Acta 1780, 1421–1431 (2008).
Google Scholar
Buescher, J. M. et al. A roadmap for decoding 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).
Google Scholar
Elbein, A. D. in Cell Floor and Extracellular Glycoconjugates (eds Roberts, D. D. and Mecham, R. P.) 119–180 (Educational Press, 1993); https://doi.org/10.1016/B978-0-12-589630-6.50009-5
Sakai, N., Insolera, R., Sillitoe, R. V., Shi, S.-H. & Kaprielian, Z. Axon sorting throughout the spinal wire marginal zone by way of Robo-mediated inhibition of N-cadherin controls spinocerebellar tract formation. J. Neurosci. 32, 15377–15387 (2012).
Google Scholar
Chen, J. Y. et al. A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and most cancers angiogenesis and metastasis pathways. Most cancers Res. 71, 473–483 (2011).
Google Scholar
Sola-Penna, M., Da Silva, D., Coelho, W. S., Marinho-Carvalho, M. M. & Zancan, P. Regulation of mammalian muscle sort 6-phosphofructo-1-kinase and its implication for the management of the metabolism. IUBMB Life 62, 791–796 (2010).
Google Scholar
Rodriguez, A. E. et al. Serine metabolism helps macrophage IL-1β manufacturing. Cell Metab. 29, 1003–1011 (2019).
Google Scholar
Zhao, X., Fu, J., Du, J. & Xu, W. The position of d-3-phosphoglycerate dehydrogenase in most cancers. Int. J. Biol. Sci. 16, 1495–1506 (2020).
Google Scholar
Ma, C. et al. The choice exercise of nuclear PHGDH contributes to tumour development underneath nutrient stress. Nat. Metab. 3, 1357–1371 (2021).
Google Scholar
Baksh, S. C. et al. Extracellular serine controls epidermal stem cell destiny and tumour initiation. Nat. Cell Biol. 22, 779–790 (2020).
Google Scholar
Liu, J. et al. Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead field M1. J. Neurooncol. 111, 245–255 (2013).
Google Scholar
Ma, X., Li, B., Liu, J., Fu, Y. & Luo, Y. Phosphoglycerate dehydrogenase promotes pancreatic most cancers improvement by interacting with eIF4A1 and eIF4E. J. Exp. Clin. Most cancers Res. 38, 66 (2019).
Google Scholar
Teoh, S. T., Ogrodzinski, M. P., Ross, C., Hunter, Ok. W. & Lunt, S. Y. Sialic acid metabolism: a key participant in breast most cancers metastasis revealed by metabolomics. Entrance. Oncol. 8, 174 (2018).
Google Scholar
Vandekeere, S. et al. Serine synthesis by way of PHGDH is important for heme manufacturing in endothelial cells. Cell Metab. 28, 573–587 (2018).
Google Scholar
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).
Google Scholar
Wright, G. W. & Simon, R. M. A random variance mannequin for detection of differential gene expression in small microarray experiments. Bioinformatics 19, 2448––2455 (2003).
Google Scholar
Paulo, J. A. & Gygi, S. P. Nicotine-induced protein expression profiling reveals mutually altered proteins throughout 4 human cell traces. Proteomics 17, 1600319 (2017).
Bassez, A. et al. A single-cell map of intratumoral modifications throughout anti-PD1 therapy of sufferers with breast most cancers. Nat. Med. 27, 820–832 (2021).
Google Scholar
Zhang, X. et al. A renewable tissue useful resource of phenotypically steady, biologically and ethnically various, patient-derived human breast most cancers xenograft fashions. Most cancers Res. 73, 4885 (2013).
Google Scholar
Lv, X. et al. Orthotopic transplantation of breast tumors as preclinical fashions for breast most cancers. J. Vis. Exp. 159, e61173 (2020).
Quintana, E. et al. Human melanoma metastasis in NSG mice correlates with medical final result in sufferers. Sci. Transl. Med. 4, 159ra149 (2012).
Google Scholar
Bankhead, P. et al. QuPath: open supply software program for digital pathology picture evaluation. Sci. Rep. 7, 16878 (2017).
Google Scholar
Berg, S. et al. ilastik: interactive machine studying for (bio)picture evaluation. Nat. Strategies 16, 1226–1232 (2019).
Google Scholar
Carpenter, A. E. et al. CellProfiler: picture evaluation software program for figuring out and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
Google Scholar
Zanotelli, V. R. T. & Bodenmiller, B. ImcSegmentationPipeline: a pixelclassification primarily based multiplexed picture segmentation pipeline. Zenodo https://doi.org/10.5281/zenodo.3841961 (2020).
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).
Google Scholar
Rueden, C. T. et al. ImageJ2: ImageJ for the subsequent technology of scientific picture knowledge. BMC Bioinform. 18, 529 (2017).
van Gorsel, M., Elia, I. & Fendt, S.-M. 13C tracer evaluation and metabolomics in 3D cultured most cancers cells. Strategies Mol. Biol. 1862, 53–66 (2019).
Google Scholar
Younger, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H. & Stephanopoulos, G. An elementary metabolite unit (EMU) primarily based technique of isotopically nonstationary flux evaluation. Biotechnol. Bioeng. 99, 686–699 (2008).
Google Scholar
Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H. Correction of 13C mass isotopomer distributions for pure steady isotope abundance. J. Mass Spectrom. 31, 255–262 (1996).
Google Scholar