Fast and efficient DNA replication with purified human proteins


  • Baretić, D. et al. Cryo-EM construction of the fork safety advanced sure to CMG at a replication fork. Mol. Cell 78, 926–940.e13 (2020).

    Article 

    Google Scholar 

  • Jones, M. L., Baris, Y., Taylor, M. R. G. & Yeeles, J. T. P. Construction of a human replisome exhibits the organisation and interactions of a DNA replication machine. EMBO J. 40, e108819 (2021).

    CAS 
    Article 

    Google Scholar 

  • Goswami, P. et al. Construction of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules within the eukaryotic replisome. Nat. Commun. 9, 5061 (2018).

    Article 

    Google Scholar 

  • Yuan, Z. et al. Ctf4 organizes sister replisomes and Pol alpha right into a replication manufacturing unit. eLife 8, e47405 (2019).

    CAS 
    Article 

    Google Scholar 

  • Rzechorzek, N. J. et al. CryoEM constructions of human CMG–ATPγS–DNA and CMG–AND-1 complexes. Nucleic Acids Res. 48, 6980–6995 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kapadia, N. et al. Processive exercise of replicative DNA polymerases within the replisome of stay eukaryotic cells. Mol. Cell 80, 114–126.e8 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lewis, J. S. et al. Tunability of DNA polymerase stability throughout eukaryotic DNA replication. Mol. Cell 77, 17–25.e5 (2020).

    CAS 
    Article 

    Google Scholar 

  • Yeeles, J. T. P., Janska, A., Early, A. & Diffley, J. F. X. How the eukaryotic replisome achieves fast and environment friendly DNA replication. Mol. Cell 65, 105–116 (2017).

    CAS 
    Article 

    Google Scholar 

  • Kilkenny, M. L. et al. The human CTF4-orthologue AND-1 interacts with DNA polymerase alpha/primase by way of its distinctive C-terminal HMG field. Open Biol. 7, 170217 (2017).

    Article 

    Google Scholar 

  • Guan, C., Li, J., Solar, D., Liu, Y. & Liang, H. The construction and polymerase-recognition mechanism of the essential adaptor protein AND-1 within the human replisome. J. Biol. Chem. 292, 9627–9636 (2017).

    CAS 
    Article 

    Google Scholar 

  • Petermann, E., Helleday, T. & Caldecott, Okay. W. Claspin promotes regular replication fork charges in human cells. Mol. Biol. Cell 19, 2373–2378 (2008).

    CAS 
    Article 

    Google Scholar 

  • Conti, C. et al. Replication fork velocities at adjoining replication origins are coordinately modified throughout DNA replication in human cells. Mol. Biol. Cell 18, 3059–3067 (2007).

    CAS 
    Article 

    Google Scholar 

  • Somyajit, Okay. et al. Redox-sensitive alteration of replisome structure safeguards genome integrity. Science 358, 797–802 (2017).

    CAS 
    Article 

    Google Scholar 

  • Abe, T. et al. AND-1 fork safety operate prevents fork resection and is important for proliferation. Nat. Commun. 9, 3091 (2018).

    Article 

    Google Scholar 

  • Nick McElhinny, S. A., Gordenin, D. A., Stith, C. M., Burgers, P. M. & Kunkel, T. A. Division of labor on the eukaryotic replication fork. Mol. Cell 30, 137–144 (2008).

    CAS 
    Article 

    Google Scholar 

  • Pursell, Z. F., Isoz, I., Lundstrom, E. B., Johansson, E. & Kunkel, T. A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317, 127–130 (2007).

    CAS 
    Article 

    Google Scholar 

  • Aria, V. & Yeeles, J. T. P. Mechanism of bidirectional leading-strand synthesis institution at eukaryotic DNA replication origins. Mol. Cell 73, 199–211.e10 (2019).

    CAS 
    Article 

    Google Scholar 

  • Grabarczyk, D. B., Silkenat, S. & Kisker, C. Structural foundation for the recruitment of Ctf18-RFC to the replisome. Construction 26, 137–144.e3 (2018).

    CAS 
    Article 

    Google Scholar 

  • Stokes, Okay., Winczura, A., Tune, B., Piccoli, G. & Grabarczyk, D. B. Ctf18-RFC and DNA Pol type a steady main strand polymerase/clamp loader advanced required for regular and perturbed DNA replication. Nucleic Acids Res. 48, 8128–8145 (2020).

    CAS 
    Article 

    Google Scholar 

  • Murakami, T. et al. Steady interplay between the human proliferating cell nuclear antigen loader advanced Ctf18-replication issue C (RFC) and DNA polymerase ε is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8*. J. Biol. Chem. 285, 34608–34615 (2010).

    CAS 
    Article 

    Google Scholar 

  • Fujisawa, R., Ohashi, E., Hirota, Okay. & Tsurimoto, T. Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase ε effectively hundreds the PCNA sliding clamp. Nucleic Acids Res. 45, 4550–4563 (2017).

    CAS 
    Article 

    Google Scholar 

  • Tunyasuvunakool, Okay. et al. Extremely correct protein construction prediction for the human proteome. Nature 596, 590–596 (2021).

    CAS 
    Article 

    Google Scholar 

  • Taylor, M. R. G. & Yeeles, J. T. P. The preliminary response of a eukaryotic replisome to DNA injury. Mol. Cell 70, 1067–1080.e12 (2018).

    CAS 
    Article 

    Google Scholar 

  • Georgescu, R. E. et al. Mechanism of uneven polymerase meeting on the eukaryotic replication fork. Nat. Struct. Mol. Biol. 21, 664–670 (2014).

    CAS 
    Article 

    Google Scholar 

  • Terret, M. E., Sherwood, R., Rahman, S., Qin, J. & Jallepalli, P. V. Cohesin acetylation speeds the replication fork. Nature 462, 231–234 (2009).

    CAS 
    Article 

    Google Scholar 

  • Crabbe, L. et al. Evaluation of replication profiles reveals key position of RFC-Ctf18 in yeast replication stress response. Nat. Struct. Mol. Biol. 17, 1391–1397 (2010).

    CAS 
    Article 

    Google Scholar 

  • Hanna, J. S., Kroll, E. S., Lundblad, V. & Spencer, F. A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21, 3144–3158 (2001).

    CAS 
    Article 

    Google Scholar 

  • Mayer, M. L., Gygi, S. P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternate RFC advanced required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959–970 (2001).

    CAS 
    Article 

    Google Scholar 

  • Kawasumi, R. et al. Vertebrate CTF18 and DDX11 important operate in cohesion is bypassed by stopping WAPL-mediated cohesin launch. Genes Dev. 35, 1368–1382 (2021).

    CAS 
    Article 

    Google Scholar 

  • Georgescu, R. E. et al. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that outline main/lagging strand operation. eLife 4, e04988 (2015).

    Article 

    Google Scholar 

  • Henricksen, L. A., Umbricht, C. B. & Wold, M. S. Recombinant replication protein A: expression, advanced formation, and practical characterization. J. Biol. Chem. 269, 11121–11132 (1994).

    CAS 
    Article 

    Google Scholar 

  • Sebesta, M. et al. Position of PCNA and TLS polymerases in D-loop extension throughout homologous recombination in people. DNA Restore 12, 691–698 (2013).

    CAS 
    Article 

    Google Scholar 

  • Xing, X. et al. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat. Commun. 10, 374 (2019).

    CAS 
    Article 

    Google Scholar 

  • Leave a Reply