Baretić, D. et al. Cryo-EM construction of the fork safety advanced sure to CMG at a replication fork. Mol. Cell 78, 926–940.e13 (2020).
Google Scholar
Jones, M. L., Baris, Y., Taylor, M. R. G. & Yeeles, J. T. P. Construction of a human replisome exhibits the organisation and interactions of a DNA replication machine. EMBO J. 40, e108819 (2021).
Google Scholar
Goswami, P. et al. Construction of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules within the eukaryotic replisome. Nat. Commun. 9, 5061 (2018).
Google Scholar
Yuan, Z. et al. Ctf4 organizes sister replisomes and Pol alpha right into a replication manufacturing unit. eLife 8, e47405 (2019).
Google Scholar
Rzechorzek, N. J. et al. CryoEM constructions of human CMG–ATPγS–DNA and CMG–AND-1 complexes. Nucleic Acids Res. 48, 6980–6995 (2020).
Google Scholar
Kapadia, N. et al. Processive exercise of replicative DNA polymerases within the replisome of stay eukaryotic cells. Mol. Cell 80, 114–126.e8 (2020).
Google Scholar
Lewis, J. S. et al. Tunability of DNA polymerase stability throughout eukaryotic DNA replication. Mol. Cell 77, 17–25.e5 (2020).
Google Scholar
Yeeles, J. T. P., Janska, A., Early, A. & Diffley, J. F. X. How the eukaryotic replisome achieves fast and environment friendly DNA replication. Mol. Cell 65, 105–116 (2017).
Google Scholar
Kilkenny, M. L. et al. The human CTF4-orthologue AND-1 interacts with DNA polymerase alpha/primase by way of its distinctive C-terminal HMG field. Open Biol. 7, 170217 (2017).
Google Scholar
Guan, C., Li, J., Solar, D., Liu, Y. & Liang, H. The construction and polymerase-recognition mechanism of the essential adaptor protein AND-1 within the human replisome. J. Biol. Chem. 292, 9627–9636 (2017).
Google Scholar
Petermann, E., Helleday, T. & Caldecott, Okay. W. Claspin promotes regular replication fork charges in human cells. Mol. Biol. Cell 19, 2373–2378 (2008).
Google Scholar
Conti, C. et al. Replication fork velocities at adjoining replication origins are coordinately modified throughout DNA replication in human cells. Mol. Biol. Cell 18, 3059–3067 (2007).
Google Scholar
Somyajit, Okay. et al. Redox-sensitive alteration of replisome structure safeguards genome integrity. Science 358, 797–802 (2017).
Google Scholar
Abe, T. et al. AND-1 fork safety operate prevents fork resection and is important for proliferation. Nat. Commun. 9, 3091 (2018).
Google Scholar
Nick McElhinny, S. A., Gordenin, D. A., Stith, C. M., Burgers, P. M. & Kunkel, T. A. Division of labor on the eukaryotic replication fork. Mol. Cell 30, 137–144 (2008).
Google Scholar
Pursell, Z. F., Isoz, I., Lundstrom, E. B., Johansson, E. & Kunkel, T. A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317, 127–130 (2007).
Google Scholar
Aria, V. & Yeeles, J. T. P. Mechanism of bidirectional leading-strand synthesis institution at eukaryotic DNA replication origins. Mol. Cell 73, 199–211.e10 (2019).
Google Scholar
Grabarczyk, D. B., Silkenat, S. & Kisker, C. Structural foundation for the recruitment of Ctf18-RFC to the replisome. Construction 26, 137–144.e3 (2018).
Google Scholar
Stokes, Okay., Winczura, A., Tune, B., Piccoli, G. & Grabarczyk, D. B. Ctf18-RFC and DNA Pol type a steady main strand polymerase/clamp loader advanced required for regular and perturbed DNA replication. Nucleic Acids Res. 48, 8128–8145 (2020).
Google Scholar
Murakami, T. et al. Steady interplay between the human proliferating cell nuclear antigen loader advanced Ctf18-replication issue C (RFC) and DNA polymerase ε is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8*. J. Biol. Chem. 285, 34608–34615 (2010).
Google Scholar
Fujisawa, R., Ohashi, E., Hirota, Okay. & Tsurimoto, T. Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase ε effectively hundreds the PCNA sliding clamp. Nucleic Acids Res. 45, 4550–4563 (2017).
Google Scholar
Tunyasuvunakool, Okay. et al. Extremely correct protein construction prediction for the human proteome. Nature 596, 590–596 (2021).
Google Scholar
Taylor, M. R. G. & Yeeles, J. T. P. The preliminary response of a eukaryotic replisome to DNA injury. Mol. Cell 70, 1067–1080.e12 (2018).
Google Scholar
Georgescu, R. E. et al. Mechanism of uneven polymerase meeting on the eukaryotic replication fork. Nat. Struct. Mol. Biol. 21, 664–670 (2014).
Google Scholar
Terret, M. E., Sherwood, R., Rahman, S., Qin, J. & Jallepalli, P. V. Cohesin acetylation speeds the replication fork. Nature 462, 231–234 (2009).
Google Scholar
Crabbe, L. et al. Evaluation of replication profiles reveals key position of RFC-Ctf18 in yeast replication stress response. Nat. Struct. Mol. Biol. 17, 1391–1397 (2010).
Google Scholar
Hanna, J. S., Kroll, E. S., Lundblad, V. & Spencer, F. A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21, 3144–3158 (2001).
Google Scholar
Mayer, M. L., Gygi, S. P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternate RFC advanced required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959–970 (2001).
Google Scholar
Kawasumi, R. et al. Vertebrate CTF18 and DDX11 important operate in cohesion is bypassed by stopping WAPL-mediated cohesin launch. Genes Dev. 35, 1368–1382 (2021).
Google Scholar
Georgescu, R. E. et al. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that outline main/lagging strand operation. eLife 4, e04988 (2015).
Google Scholar
Henricksen, L. A., Umbricht, C. B. & Wold, M. S. Recombinant replication protein A: expression, advanced formation, and practical characterization. J. Biol. Chem. 269, 11121–11132 (1994).
Google Scholar
Sebesta, M. et al. Position of PCNA and TLS polymerases in D-loop extension throughout homologous recombination in people. DNA Restore 12, 691–698 (2013).
Google Scholar
Xing, X. et al. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat. Commun. 10, 374 (2019).
Google Scholar