Geim, A. Okay. & Novoselov, Okay. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
Google Scholar
Wang, Q. H., Kalantar-Zadeh, Okay., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition steel dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
Google Scholar
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
Google Scholar
Novoselov, Okay. S. et al. Electrical discipline impact in atomically skinny carbon movies. Science 306, 666–669 (2004).
Google Scholar
Fan, Q. et al. Biphenylene community: a nonbenzenoid carbon allotrope. Science 372, 852–856 (2021).
Google Scholar
Kolmer, M. et al. Rational synthesis of atomically exact graphene nanoribbons immediately on steel oxide surfaces. Science 369, 571–575 (2020).
Google Scholar
Yu, H., Xue, Y. & Li, Y. Graphdiyne and its meeting architectures: synthesis, functionalization, and purposes. Adv. Mater. 31, e1803101 (2019).
Google Scholar
Bakharev, P. V. et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. 15, 59–66 (2020).
Google Scholar
Toh, C. T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).
Google Scholar
Cui, X. et al. Rolling up transition steel dichalcogenide nanoscrolls through one drop of ethanol. Nat. Commun. 9, 1301 (2018).
Google Scholar
Wan, J. et al. Extremely-thin stable electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 10, 3265 (2019).
Google Scholar
Hirsch, A. The period of carbon allotropes. Nat. Mater. 9, 868–871 (2010).
Google Scholar
Simon, P. & Gogotsi, Y. Supplies for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).
Google Scholar
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Google Scholar
Zhai, H. J. et al. Statement of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).
Google Scholar
Jena, P. & Solar, Q. Tremendous atomic clusters: design guidelines and potential for constructing blocks of supplies. Chem. Rev. 118, 5755–5870 (2018).
Google Scholar
Clean, V. D. et al. Excessive-pressure polymerized phases of C60. Carbon 36, 319–343 (1998).
Google Scholar
Okada, S. & Saito, S. Digital construction and energetics of pressure-induced two-dimensional C60 polymers. Phys. Rev. B 59, 1930–1936 (1999).
Google Scholar
Xu, C. H. & Scuseria, G. E. Theoretical predictions for a two-dimensional rhombohedral section of stable C60. Phys. Rev. Lett. 74, 274–277 (1995).
Google Scholar
Makarova, T. L. et al. Magnetic carbon. Nature 413, 716–718 (2001).
Google Scholar
Tanaka, M. & Yamanaka, S. Vapor-phase development and structural characterization of single crystals of magnesium doped two-dimensional fullerene polymer Mg2C60. Cryst. Progress Des. 18, 3877–3882 (2018).
Google Scholar
Pekker, S. et al. Single-crystalline (KC60)n: a conducting linear alkali fulleride polymer. Science 265, 1077–1078 (1994).
Google Scholar
Porezag, D., Pederson, M. R., Frauenheim, T. & Kohler, T. Construction, stability, and vibrational properties of polymerized C60. Phys. Rev. B 52, 14963–14970 (1995).
Google Scholar
Haddon, R. C. et al. Conducting movies of C60 and C70 by alkali-metal doping. Nature 350, 320–322 (1991).
Google Scholar
Wågberg, T. & Sundqvist, B. Raman examine of the two-dimensional polymers Na4C60 and tetragonal C60. Phys. Rev. B 65, 155421 (2002).
Google Scholar
Lengthy, V. C. et al. Far-infrared vibrational properties of high-pressure high-temperature C60 polymers and the C60 dimer. Phys. Rev. B 61, 13191–13201 (2000).
Google Scholar
Chen, Y. et al. Black arsenic: a layered semiconductor with excessive in-plane anisotropy. Adv. Mater. 30, e1800754 (2018).
Google Scholar
Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered materials for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).
Google Scholar