The IMBIE crew. Mass steadiness of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).
ADS
Article
CAS
Google Scholar
Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea degree throughout the satellite tv for pc period. Environ. Res. Lett. 13, 063008 (2018).
ADS
Article
Google Scholar
Gardner, A. S. et al. Elevated West Antarctic and unchanged East Antarctic ice discharge over the past 7 years. Cryosphere 12, 521–547 (2018). Makes use of ice-surface-velocity datasets and a SMB mannequin to recommend that, general, ice discharge from glaciers draining the EAIS was remarkably steady between round 2008 and 2013/2015, whereas these in West Antarctica elevated.
ADS
Article
Google Scholar
Rignot, E. et al. 4 a long time of Antarctic Ice Sheet mass steadiness from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019). Makes use of revised drainage stock, ice thickness and ice-velocity information, along with a SMB mannequin, to calculate Antarctic Ice Sheet mass steadiness (1979–2017) and recommend that East Antarctica was an vital participant in mass loss.
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Schröder, L. et al. 4 a long time of floor elevation change of the Antarctic Ice Sheet from multi-mission satellite tv for pc altimetry. Cryosphere 13, 427–449 (2019).
ADS
Article
Google Scholar
Shepherd, A. et al. Tendencies in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).
ADS
PubMed
PubMed Central
Article
Google Scholar
Smith, B. et al. Pervasive ice sheet mass loss displays competing ocean and ambiance processes. Science 368, 1239–1242 (2020).
ADS
CAS
PubMed
Article
Google Scholar
Velicogna, I. et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Observe-On missions. Geophys. Res. Lett. 47, e2020GL087291 (2020).
ADS
Article
Google Scholar
Wang, L., Davis, J. L. & Howat, I. M. Advanced patterns of Antarctic ice sheet mass change resolved by time-dependent price modelling of GRACE and GRACE follow-on observations. Geophys. Res. Lett. 48, e2020GL090961 (2021). Introduces a brand new strategy for analysing satellite tv for pc gravimetry observations to estimate time-varying mass-change charges in Antarctica and finds a repeatedly accelerating development of mass loss in Wilkes Land, East Antarctica, over the previous 20 years.
ADS
Google Scholar
Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).
ADS
CAS
Article
Google Scholar
Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. In depth dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).
ADS
CAS
PubMed
Article
Google Scholar
Pritchard, H. D. et al. Antarctic ice-sheet loss pushed by basal melting of ice cabinets. Nature 484, 502–505 (2012).
ADS
CAS
PubMed
Article
Google Scholar
Depoorter, M. A. et al. Calving fluxes and basal soften charges of Antarctic ice cabinets. Nature 502, 89–92 (2013).
ADS
CAS
PubMed
Article
Google Scholar
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting round Antarctica. Science 341, 266–270 (2013).
ADS
CAS
PubMed
Article
Google Scholar
Paolo, F. S., Fricker, H. A. & Padman, L. Quantity loss from Antarctic ice cabinets is accelerating. Science 348, 327–331 (2015).
ADS
CAS
PubMed
Article
Google Scholar
Fürst, J. J. et al. The security band of Antarctic ice cabinets. Nat. Clim. Change 6, 479–482 (2016).
ADS
Article
Google Scholar
Konrad, H. et al. Web retreat of Antarctic glacier grounding traces. Nat. Geosci. 11, 258–262 (2018).
ADS
CAS
Article
Google Scholar
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss pushed by thinning ice cabinets. Geophys. Res. Lett. 46, 13903–13909 (2019).
ADS
Article
Google Scholar
Schoof, C. Ice sheet grounding line dynamics: regular states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).
ADS
Article
Google Scholar
Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse impact: a menace of catastrophe. Nature 271, 321–325 (1978).
ADS
Article
Google Scholar
Noble, T. L. et al. The sensitivity of the Antarctic Ice Sheet to a altering local weather: previous, current and future. Rev. Geophys. 58, e2019RG000663 (2020).
ADS
Article
Google Scholar
Sugden, D. E. et al. Preservation of Miocene glacier ice in East Antarctica. Nature 376, 412–414 (1995).
ADS
CAS
Article
Google Scholar
Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M. & Hanna, E. Snowfall-driven progress in East Antarctic Ice Sheet mitigates latest sea-level rise. Science 308, 1898–1901 (2005). One of many earliest research to make use of satellite tv for pc radar altimetry to point out that sea-level rise was mitigated by snowfall-driven progress of the EAIS (1992–2003).
ADS
CAS
PubMed
Article
Google Scholar
Zwally, H. J. et al. Mass modifications of the Greenland and Antarctic ice sheets and ice cabinets and contributions to sea degree rise: 1992–2002. J. Glaciol. 51, 509–527 (2005).
ADS
Article
Google Scholar
Payne, A. J. et al. Future sea degree change underneath the Coupled Mannequin Intercomparison Mission Section 5 and Section 6 eventualities from the Greenland and Antarctic ice sheets. Geophys. Res. Lett. 48, e2020GL091741 (2021).
ADS
Article
Google Scholar
Greenbaum, J. S. et al. Ocean entry to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 8, 294–298 (2015).
ADS
CAS
Article
Google Scholar
Rintoul, S. R. et al. Ocean warmth drives fast basal soften of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016). Presents observations from the calving entrance of Totten Glacier, East Antarctica, that affirm that heat water enters the ice-shelf cavity by way of a deep channel, driving excessive basal-melt charges.
ADS
PubMed
PubMed Central
Article
Google Scholar
Silvano, A., Rintoul, S. R., Pena-Molino, B. & Williams, G. D. Distribution of water plenty and meltwater on the continental shelf close to the Totten and Moscow College ice cabinets. J. Geophys. Res. Oceans 122, 2050–2068 (2017).
ADS
Article
Google Scholar
Ribeiro, N. et al. Heat modified Circumpolar Deep Water intrusions drive ice shelf soften and inhibit Dense Shelf Water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 126, e20202JC016998 (2021).
ADS
Article
Google Scholar
Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice modifications. Sci. Adv. 2, e1501350 (2016).
ADS
PubMed
PubMed Central
Article
Google Scholar
Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4, 451–455 (2014).
ADS
Article
Google Scholar
Flament, T. & Rémy, F. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J. Glaciol. 58, 830–840 (2012).
ADS
Article
Google Scholar
Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).
ADS
Article
Google Scholar
Li, X., Rignot, E., Mouginot, J. & Scheuchl, B. Ice circulation dynamics and mass lack of Totten Glacier, East Antarctica, from 1989 to 2015. Geophys. Res. Lett. 43, 6366–6373 (2016).
ADS
Article
Google Scholar
Brancato, V. et al. Grounding line retreat of Denman Glacier, East Antarctica, measured with COSMO-SkyMed radar interferometry information. Geophys. Res. Lett. 47, e2019GL086291 (2020). Presents observations of fast grounding-line retreat (1996–2017/18) alongside a deep trough from an East Antarctic glacier holding 1.5 m sea-level rise equal.
ADS
Article
Google Scholar
Miles, B. W. J., Stokes, C. R., Vieli, A. & Cox, N. J. C. Speedy, climate-driven modifications in outlet glaciers on the Pacific coast of East Antarctica. Nature 500, 563–566 (2013).
ADS
CAS
PubMed
Article
Google Scholar
Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, pushed by sea-ice break-up. Cryosphere 11, 427–442 (2017).
ADS
Article
Google Scholar
Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Velocity will increase at Cook dinner Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood occasion. Cryosphere 12, 3123–3136 (2018).
ADS
Article
Google Scholar
Cook dinner, C. P. et al. Dynamic behaviour of the East Antarctic ice sheet throughout Pliocene heat. Nat. Geosci. 6, 765–769 (2013). Means that modifications within the provenance of sedimentary materials on the Wilkes Land continental shelf could be linked to shifts within the place of the EAIS margin and ensuing erosional pathways.
ADS
CAS
Article
Google Scholar
Cook dinner, C. P. et al. Sea floor temperature management on the distribution of far-travelled Southern Ocean ice-rafted detritus throughout the Pliocene. Paleoceanography 29, 533–538 (2014).
ADS
Article
Google Scholar
Wilson, D. J. et al. Ice loss from the East Antarctic Ice Sheet throughout late Pleistocene interglacials. Nature 561, 383–386 (2018).
ADS
CAS
PubMed
Article
Google Scholar
Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica throughout a heat interglacial. Nature 583, 554–559 (2020).
ADS
CAS
PubMed
Article
Google Scholar
Golledge, N. R. et al. The multi-millennial Antarctic dedication to future sea-level rise. Nature 526, 421–425 (2015). Makes use of a coupled ice-sheet/ice-shelf mannequin to point out that, if atmospheric warming exceeds 1.5 to 2 °C above current, collapse of ice cabinets triggers a centennial-scale to millennial-scale response that features substantial contributions from East Antarctica’s marine basins underneath ‘excessive’ eventualities.
ADS
CAS
PubMed
Article
Google Scholar
DeConto, R. M. & Pollard, D. Contribution of Antarctica to previous and future sea-level rise. Nature 531, 591–597 (2016).
ADS
CAS
PubMed
Article
Google Scholar
Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most weak to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).
ADS
Article
Google Scholar
DeConto, R. M. et al. The Paris Local weather Settlement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).
ADS
CAS
PubMed
Article
Google Scholar
Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012). Reviews the addition of 350 Gt of snowfall over the EAIS from 2009 to 2011 from excessive precipitation occasions, equal to a lower in international imply sea degree at a price of 0.32 mm 12 months−1 over this three-year interval.
ADS
Google Scholar
Lenaerts, J. T. M. et al. Latest snowfall anomalies in Dronning Maud Land, East Antarctica, in a historic and future local weather perspective. Geophys. Res. Lett. 40, 2684–2688 (2013).
ADS
Article
Google Scholar
Jones, J. M. et al. Assessing latest developments in high-latitude Southern Hemisphere floor local weather. Nat. Clim. Change 6, 917–926 (2016).
ADS
Article
Google Scholar
Gwyther, D. E. et al. Intrinsic processes drive variability in basal melting of the Totten Glacier Ice Shelf. Nat. Commun. 9, 3141 (2018).
ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
King, M. A. & Watson, C. S. Antarctic floor mass steadiness: pure variability, noise, and detecting new developments. Geophys. Res. Lett. 47, e2020GL087493 (2020).
ADS
Article
Google Scholar
Zachos, J. C., Breza, J. R. & Smart, S. M. Early Oligocene ice-sheet growth on Antarctica: steady isotope and sedimentological proof from Kerguelen Plateau, southern Indian Ocean. Geology 20, 569–573 (1992).
ADS
CAS
Article
Google Scholar
Gulick, S. P. S. et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 552, 225–229 (2017).
ADS
CAS
PubMed
Article
Google Scholar
Gasson, E. & Keisling, B. A. The Antarctic ice sheet: a paleoclimate modelling perspective. Oceanography 33, 90–100 (2020).
Article
Google Scholar
Naish, T. R. et al. Orbitally induced oscillations within the East Antarctic ice sheet on the Oligocene/Miocene boundary. Nature 413, 719–723 (2001). Presents proof of cyclic variability in Ross Sea sediment cores which are linked to the oscillating extent of the EAIS throughout the Oligocene–Miocene transition.
ADS
CAS
PubMed
Article
Google Scholar
Levy, R. et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations within the early to mid-Miocene. Proc. Natl Acad. Sci. USA. 113, 3453–3458 (2016).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet throughout the early to mid-Miocene. Proc. Natl Acad. Sci. USA. 113, 3459–3464 (2016).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Passchier, S. et al. Early and center Miocene Antarctic glacial historical past from the sedimentary facies distribution within the AND-2A drill gap, Ross Sea, Antarctica. Geol. Soc. Am. Bull. 123, 2352–2365 (2011).
ADS
CAS
Article
Google Scholar
Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl Acad. Sci. USA. 105, 10676–10680 (2008).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Rae, J. W. B. et al. Atmospheric CO2 over the previous 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 609–641 (2021).
ADS
CAS
Article
Google Scholar
Sangiori, et al. Southern Ocean warming and Wilkes Land ice sheet retreat throughout the mid-Miocene. Nat. Commun. 9, 317 (2018).
ADS
Article
CAS
Google Scholar
Marshalek, J. W. et al. A big West Antarctic Ice Sheet explains early Neogene sea-level amplitude. Nature 600, 450–455 (2021).
ADS
Article
CAS
Google Scholar
Miller, Okay. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin data. Sci. Adv. 6, eaaz1346 (2020).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Lee, J.-Y. et al. in Local weather Change 2021: The Bodily Science Foundation. Contribution of Working Group I to the Sixth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Masson-Delmotte, V. et al.) Ch. 4 (Cambridge Univ. Press, in press).
Steinthorsdottir, M. et al. The Miocene: the way forward for the previous. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2021).
Google Scholar
Martínez-Botí, M. A. et al. Plio-Pleistocene local weather sensitivity evaluated utilizing high-resolution CO2 data. Nature 518, 49–54 (2015).
ADS
PubMed
Article
CAS
Google Scholar
Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and local weather fashions for the mid-Pliocene heat interval. Nat. Commun. 7, 10646 (2016).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Oppenheimer, M. et al. in IPCC Particular Report on the Ocean and Cryosphere in a Altering Local weather (eds Pörtner, H.-O. et al.) Ch. 4 (Cambridge Univ. Press, 2019).
Dumitru, O. A. et al. Constraints on international imply sea degree throughout Pliocene heat. Nature 574, 233–236 (2019).
ADS
CAS
PubMed
Article
Google Scholar
Grant, G. R. et al. The amplitude and origin of sea-level variability throughout the Pliocene epoch. Nature 574, 237–241 (2019).
ADS
CAS
PubMed
Article
Google Scholar
Dutton, A. et al. Sea-level rise on account of polar ice-sheet mass loss throughout previous heat intervals. Science 349, aaa4019 (2015).
CAS
PubMed
Article
Google Scholar
Dolan, A. M. et al. Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 98–110 (2011).
Article
Google Scholar
Webb, P. N., Harwood, D. M., McKelvey, B. C., Mercer, J. H. & Stott, L. D. Cenozoic marine sedimentation and ice quantity on the East Antarctic craton. Geology 12, 287–291 (1984).
ADS
Article
Google Scholar
Scherer, R., DeConto, R., Pollard, D. & Alley, R. B. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat. Nat. Commun. 7, 12957 (2016).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Bertram, R. A. et al. Pliocene deglacial occasion timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica. Earth Planet. Sci. Lett. 494, 109–116 (2018).
ADS
CAS
Article
Google Scholar
Taylor-Silva, B. I. & Riesselman, C. R. Polar frontal migration within the heat late Pliocene: diatom proof from the Wilkes Land margin, East Antarctica. Paleoceanogr. Paleoclimatol. 33, 76–92 (2018).
ADS
Article
Google Scholar
Williams, T. et al. Proof for iceberg armadas from East Antarctica within the Southern Ocean throughout the late Miocene and early Pliocene. Earth Planet. Sci. Lett. 290, 351–361 (2010).
ADS
CAS
Article
Google Scholar
Aitken, A. R. A. et al. Repeated large-scale retreat and advance of Totten Glacier indicated by inland mattress erosion. Nature 533, 385–389 (2016).
ADS
CAS
PubMed
Article
Google Scholar
Ohneiser, C. et al. Heat fjords and vegetated landscapes in early Pliocene East Antarctica. Earth Planet. Sci. Lett. 534, 116045 (2020).
CAS
Article
Google Scholar
Passchier, S. Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures primarily based on a Pliocene excessive‐decision file of ice‐rafted particles off Prydz Bay, East Antarctica. Paleoceanogr. 26, PA4204 (2011).
ADS
Article
Google Scholar
Golledge, N. R. et al. Antarctic local weather and ice-sheet configuration throughout the early Pliocene interglacial at 4.23 Ma. Clim. Previous 13, 959–975 (2017).
Article
Google Scholar
De Boer, B. et al. Simulating the Antarctic ice sheet within the late-Pliocene heat interval: PLISMIP-ANT, an ice-sheet mannequin intercomparison undertaking. Cryosphere 9, 881–903 (2015).
ADS
Article
Google Scholar
Dolan, A. M., de Boer, B., Bernales, J., Hill, D. J. & Haywood, A. M. Excessive local weather mannequin dependency of Pliocene Antarctic ice-sheet predictions. Nat. Commun. 9, 2799 (2018).
ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Yan, Q., Zhang, Z. & Wang, H. Investigating uncertainty within the simulation of the Antarctic ice sheet throughout the mid-Piacenzian. J. Geophys. Res. Atmos. 121, 1559–1574 (2016).
ADS
Article
Google Scholar
Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat pushed by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015). Proposes new ice-sheet-model physics, together with parameterizations of marine-ice-cliff instability, in an try to breed the marine-based retreat of the EAIS throughout the mid-Pliocene.
ADS
CAS
Article
Google Scholar
Edwards, T. L. et al. Revisiting Antarctic ice loss on account of marine ice-cliff instability. Nature 566, 58–63 (2019).
ADS
CAS
PubMed
Article
Google Scholar
Jones, R. S. et al. Cosmogenic nuclides constrain floor fluctuations of an East Antarctic outlet glacier because the Pliocene. Earth Planet. Sci. Lett. 480, 75–86 (2017).
ADS
CAS
Article
Google Scholar
Bradley, S. L., Siddall, M., Milne, G. A., Masson-Delmotte, V. & Wolff, E. Combining ice core data and ice sheet fashions to discover the evolution of the East Antarctic ice sheet throughout the Final Interglacial interval. Glob. Planet. Change 100, 278–290 (2013).
ADS
Article
Google Scholar
Sutter, J. et al. Restricted retreat of the Wilkes Basin ice sheet throughout the Final Interglacial. Geophys. Res. Lett. 47, e2020GL088131 (2020).
ADS
Article
Google Scholar
Waterproof coat, A. N. et al. Retreat historical past of the East Antarctic Ice Sheet because the Final Glacial Most. Quat. Sci. Rev. 100, 10–30 (2014). Synthesizes geological and chronological proof to constrain the historical past of the EAIS from round 30,000 years in the past to the current, highlighting marked regional asynchronicity and that many of the mass loss occurred between about 12,000 and 6,000 years in the past.
ADS
Article
Google Scholar
Livingstone, S. J. et al. Antarctic palaeo-ice streams. Earth Sci. Rev. 111, 90–128 (2012).
ADS
Article
Google Scholar
Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial historical past throughout and because the LGM. Quat. Sci. Rev. 100, 31–54 (2014).
ADS
Article
Google Scholar
Hillenbrand, C.-D. et al. Reconstruction of modifications within the Weddell Sea sector of the Antarctic Ice Sheet because the Final Glacial Most. Quat. Sci. Rev. 100, 111–136 (2014).
ADS
Article
Google Scholar
Arndt, J. E., Hillenbrand, C.-D., Grobe, H., Kuhn, G. & Wacker, L. Proof for a dynamic grounding line in outer Filchner Trough, Antarctica, till the early Holocene. Geology 45, 1035–1038 (2020).
ADS
Article
Google Scholar
Lin, Y. et al. A reconciled answer of Meltwater Pulse 1A sources utilizing sea-level fingerprinting. Nat. Commun. 12, 2015 (2021).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Weber, M. et al. Millennial-scale variability in Antarctic ice-sheet discharge over the past deglaciation. Nature 510, 134–138 (2014).
ADS
CAS
PubMed
Article
Google Scholar
Corridor, B. L. et al. Accumulation and marine forcing of ice dynamics within the western Ross Sea over the past deglaciation. Nat. Geosci. 8, 625–628 (2015).
ADS
CAS
Article
Google Scholar
King, C. et al. Delayed most and recession of an East Antarctic outlet glacier. Geology 48, 630–634 (2020).
ADS
CAS
Article
Google Scholar
Jones, R. S. et al. Speedy Holocene thinning of an East Antarctic outlet glacier pushed by marine ice sheet instability. Nat. Commun. 6, 8910 (2015).
ADS
CAS
PubMed
Article
Google Scholar
White, D. A., Fink, D. & Gore, D. B. Cosmogenic nuclide proof for enhanced sensitivity of an East Antarctic ice stream to vary over the past deglaciation. Geology 39, 23–26 (2011).
ADS
CAS
Article
Google Scholar
Spector, P. et al. Speedy early‐Holocene deglaciation within the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).
ADS
Article
Google Scholar
Jones, R. S., Gudmundsson, G. H., Waterproof coat, A. N., McCormack, F. S. & Whitmore, R. J. Ocean-driven and topography-controlled nonlinear glacier retreat throughout the Holocene: southwestern Ross Sea, Antarctica. Geophys. Res. Lett. 48, e2020GL091454 (2021).
ADS
Google Scholar
McKay, R. et al. Antarctic marine ice-sheet retreat within the Ross Sea throughout the early Holocene. Geology 44, 7–10 (2016).
ADS
Article
Google Scholar
Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L. & Anderson, J. B. Previous ice-sheet behaviour: retreat eventualities and altering controls within the Ross Sea, Antarctica. Cryosphere 10, 1003–1020 (2016).
ADS
Article
Google Scholar
Kingslake, J. et al. In depth retreat and re-advance of the West Antarctic Ice Sheet throughout the Holocene. Nature 558, 430–434 (2018).
ADS
CAS
PubMed
Article
Google Scholar
Waterproof coat, A. et al. Retreat of the East Antarctic ice sheet over the past glacial termination. Nat. Geosci. 4, 195–202 (2011).
ADS
CAS
Article
Google Scholar
Whitehouse, P. L., Bentley, M. J., & Le Brocq, A. M. A deglacial mannequin for Antarctica: geological constraints and glaciological modelling as a foundation for a brand new mannequin of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 32, 1–24 (2012).
ADS
Article
Google Scholar
Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from decreased Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).
ADS
CAS
PubMed
Article
Google Scholar
Lowry, D. P. et al. Deglacial grounding-line retreat within the Ross Embayment, Antarctica, managed by ocean and ambiance forcing. Sci. Adv. 5, eaav8754 (2019).
ADS
PubMed
PubMed Central
Article
Google Scholar
Thompson, A. F., Stewart, A. L., Spence, P. & Heywood, Okay. J. The Antarctic Slope Present in a altering local weather. Rev. Geophys. 56, 741–770 (2018).
ADS
Article
Google Scholar
Morrison, A. Okay., Hogg, A. Mc. C., England, M. H. & Spence, P. Heat Circumpolar Deep Water transport in direction of Antarctica pushed by native dense water export in canyons. Sci. Adv. 6, eaav2516 (2020).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Hirano, D. et al. Robust ice-ocean interplay beneath Shirase Glacier Tongue in East Antarctica. Nat. Commun. 11, 4221 (2020).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Jacobs, S. S. & Giulivi, C. F. Giant multidecadal salinity developments close to the Pacific–Antarctic continental margin. J. Clim. 23, 4508–4524 (2010).
ADS
Article
Google Scholar
Schmidtko, S., Heywood, Okay. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).
ADS
CAS
PubMed
Article
Google Scholar
Herraiz–Borreguero, R. et al. Circulation of modified Circumpolar Deep Water and basal soften beneath the Amery Ice Shelf, East Antarctica. J. Geophys. Res. Oceans. 120, 3098–3112 (2015).
ADS
Article
Google Scholar
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variation in meltwater enter to the Southern Ocean from Antarctic ice cabinets. Nat. Geosci. 13, 616–620 (2020).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Alley, Okay. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of heat water on Antarctic ice shelf stability by way of basal channel formation. Nat. Geosci. 9, 290–292 (2016).
ADS
CAS
Article
Google Scholar
Dow, C. F. et al. Basal channels drive lively floor hydrology and transverse ice shelf fracture. Sci. Adv. 4, eaa07212 (2018).
ADS
Article
Google Scholar
Pelle, T., Morlighem, M. & McCormack, F. S. Aurora Basin, the weak underbelly of East Antarctica. Geophys. Res. Lett. 47, GL086821 (2020).
Article
Google Scholar
Rignot, E. Modifications in ice dynamics and mass steadiness of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364, 1637–1655 (2006).
ADS
Article
Google Scholar
Wingham, D. J., Shepherd, A., Muir, A. & Marshall, G. J. Mass steadiness of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364, 1627–1635 (2006).
ADS
CAS
Article
Google Scholar
Shepherd, A. & Wingham, D. Latest sea-level contributions of the Antarctic and Greenland ice sheets. Science 316, 1529–1532 (2007).
ADS
Article
CAS
Google Scholar
Greene, C. A., Blankenship, D. D., Gwyther, E. E., Silvano, A. & van Wijk, E. Wind causes Totten Ice Shelf soften and acceleration. Sci. Adv. 3, e1701681 (2017).
ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Miles, B. W. J. et al. Latest acceleration of Denman Glacier (1972–2017), East Antarctica, pushed by grounding line retreat and modifications in ice tongue configuration. Cryosphere 15, 663–676 (2021).
ADS
Article
Google Scholar
Frezzotti, M., Cimbelli, A. & Ferrigno, J. G. Ice-front change and iceberg behaviour alongside Oates and George V Coasts, Antarctica, 1912-96. Ann. Glaciol. 27, 643–650 (1998).
ADS
Article
Google Scholar
Wang, X., Holland, D. M., Cheng, X. & Gong, P. Grounding and calving cycle of Mertz Ice Tongue revealed by shallow Mertz Financial institution. Cryosphere 10, 2043–2056 (2016).
ADS
Article
Google Scholar
Diez, A. et al. Basal settings management quick ice circulation within the Restoration/Slessor/Bailey area, East Antarctica. Geophys. Res. Lett. 45, 2076–2715 (2018).
Article
Google Scholar
Lovell, A. M., Stokes, C. R. & Jamieson, S. S. R. Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972–2013). Antarct. Sci. 29, 468–483 (2017).
ADS
Article
Google Scholar
Nakamura, Okay., Yamanokuchi, T., Doi, Okay. & Shubuya, Okay. Web mass steadiness calculations for the Shirase Drainage Basin, East Antarctica, utilizing the mass funds methodology. Polar Sci. 10, 111–122 (2016).
ADS
Article
Google Scholar
Kittel, C. et al. Diverging future floor mass steadiness between the Antarctic ice cabinets and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).
ADS
Article
Google Scholar
Lenaerts, J. T. M., Medley, B., van den Broeke, M. R. & Wouters, B. Observing and modelling ice sheet floor mass steadiness. Rev. Geophys. 57, 376–420 (2019).
ADS
PubMed
PubMed Central
Article
Google Scholar
Mottram, R. et al. What’s the floor mass steadiness of Antarctica? An intercomparison of regional local weather mannequin estimates. Cryosphere 15, 3751–3784 (2021).
ADS
Article
Google Scholar
Medley, B. & Thomas, E. R. Elevated snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).
ADS
CAS
Article
Google Scholar
Thomas, E. R. et al. Regional Antarctic snow accumulation over the previous 1000 years. Clim. Previous. 13, 1491–1513 (2017).
Article
Google Scholar
Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread motion of meltwater onto and throughout Antarctic ice cabinets. Nature 544, 349–352 (2017).
ADS
CAS
PubMed
Article
Google Scholar
Stokes, C. R., Sanderson, J. E., Miles, B. W. L., Jamieson, S. S. R. & Leeson, A. A. Widespread distribution of supraglacial lakes across the margin of the East Antarctic Ice Sheet. Sci Rep. 9, 13823 (2019).
ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Lenaerts, J. T. M. et al. Meltwater produced by wind–albedo interplay saved in an East Antarctic ice shelf. Nat. Clim. Change 7, 58–62 (2017).
ADS
Article
Google Scholar
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R. & Leeson, A. A. Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica. Cryosphere 14, 4103–4120 (2020).
ADS
Article
Google Scholar
Warner, R. C. et al. Speedy formation of an ice doline on Amery Ice Shelf, East Antarctica. Geophys. Res. Lett. 48, e2020GL091095 (2021).
ADS
PubMed
PubMed Central
Article
Google Scholar
Alley, Okay. E., Scambos, T. A., Miller, J. Z., Lengthy, D. G. & MacFerrin, M. Quantifying vulnerability of Antarctic ice cabinets to hydrofracture utilizing microwave scattering properties. Distant Sens. Environ. 210, 297–306 (2018).
ADS
Article
Google Scholar
Lai, C.-Y. et al. Vulnerability of Antarctica’s ice cabinets to meltwater-driven fracture. Nature 584, 574–578 (2020).
ADS
CAS
PubMed
Article
Google Scholar
Kuipers Munneke, P., Ligtenberg, S. R., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).
ADS
Article
Google Scholar
Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C. & Berne, A. Current and way forward for rainfall in Antarctica. Geophys. Res. Lett. 48, e2020GL092281 (2021).
ADS
Article
Google Scholar
Trusel, L. D. et al. Divergent trajectories of Antarctic floor soften underneath two twenty-first-century local weather eventualities. Nat. Geosci. 8, 927–932 (2015).
ADS
CAS
Article
Google Scholar
Uotila, P., Lynch, A. H., Cassano, J. J. & Cullather, R. I. Modifications in Antarctic internet precipitation within the twenty first century primarily based on Intergovernmental Panel on Local weather Change (IPCC) mannequin eventualities. J. Geophys. Res. 112, D10107 (2007).
ADS
Google Scholar
Bracegirdle, T. J., Connolley, W. M. & Turner, J. Antarctic local weather change over the twenty first century. J. Geophys. Res. 113, D03103 (2008).
ADS
Google Scholar
Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L. & van Meijgaard, E. Future floor mass steadiness of the Antarctic ice sheet and its affect on sea degree change, simulated by a regional atmospheric local weather mannequin. Clim. Dyn. 41, 867–884 (2013).
Article
Google Scholar
Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the twenty first century. Cryosphere 14, 3033–3070 (2020). Presents an intercomparison of ice-flow simulations from 13 worldwide teams and finds that East Antarctic mass change (2015–2100) varies from −6.1 cm to +8.3 cm within the simulations, with a marked improve in SMB outweighing the elevated ice discharge underneath most RCP8.5 projections.
ADS
Article
Google Scholar
Gilbert, E. & Kittel, C. Floor soften and runoff on Antarctic ice cabinets at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, E2020GL091733 (2021).
ADS
Article
Google Scholar
Intergovernmental Panel on Local weather Change (IPCC). Local weather Change 2013: The Bodily Science Foundation. Contribution of Working Group I to the Fifth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Intergovernmental Panel on Local weather Change (IPCC). Local weather Change 2021: The Bodily Science Foundation. Contribution of Working Group I to the Sixth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).
Edwards, T. L. et al. Projected land ice contributions to twenty first century sea degree rise. Nature 593, 74–82 (2021). Presents statistical emulation of ISMIP6 projections and finds East Antarctic sea-level contributions of −4 to +7 cm from 2015–2100 underneath SSP1-2.6 and SSP2-4.5 (5–95% vary), growing to −1 to +21 cm underneath a risk-averse subset of essentially the most delicate fashions and inputs.
ADS
CAS
PubMed
Article
Google Scholar
Lowry, D. P., Krapp, M., Golledge, N. R. & Alevropoulos-Borrill, A. The affect of emissions eventualities on future Antarctic ice loss is unlikely to emerge this century. Commun. Earth Environ. 2, 221 (2021).
ADS
Article
Google Scholar
Nowicki, S. et al. Experimental protocol for sea degree projections from ISMIP6 stand-alone ice sheet fashions. Cryosphere 14, 2331–2368 (2020).
ADS
Article
Google Scholar
Jourdain, N. C. et al. A protocol for calculating basal soften charges within the ISMIP6 Antarctic ice sheet projections. Cryosphere 14, 3111–3134 (2020).
ADS
Article
Google Scholar
Levermann, A. et al. Projecting Antarctica’s contribution to future sea degree rise from basal ice shelf soften utilizing linear response capabilities of 16 ice sheet fashions (LARMIP-2). Earth Syst. Dyn. 11, 35–76 (2020).
ADS
Article
Google Scholar
Bassis, J. N., Berg, B., Crawford, A. J. & Benn, D. I. Transition to marine ice cliff Instability managed by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).
ADS
CAS
PubMed
Article
Google Scholar
Clerc, F., Minchew, B. M. & Behn, M. D. Marine ice cliff Instability mitigated by sluggish elimination of ice cabinets. Geophys. Res. Lett. 46, 12108–12116 (2019).
ADS
Article
Google Scholar
Crawford, A. J. et al. Marine ice-cliff instability modeling reveals mixed-mode ice-cliff failure and yields calving price parameterization. Nat. Commun. 12, 2701 (2021).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured professional judgment. Proc. Natl Acad. Sci. USA. 116, 11195–11200 (2019).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Hausfather, Z. & Forster, P. Evaluation: do COP26 guarantees hold international warming beneath 2C? Carbon Transient https://www.carbonbrief.org/analysis-do-cop26-promises-keep-global-warming-below-2c (2021).
Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).
ADS
CAS
PubMed
Article
Google Scholar
Solar, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).
ADS
Article
Google Scholar
Purich, A. & England, M. H. Historic and future projected warming of Antarctic Shelf Backside Water in CMIP6 fashions. Geophys. Res. Lett. 48, e2021GL092752 (2021).
ADS
Article
Google Scholar
Bracegirdle, T. J. et al. Evaluation of floor winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 fashions: historic bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).
ADS
Article
Google Scholar
Spence, P. et al. Speedy subsurface warming and circulation modifications of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).
ADS
Article
Google Scholar
Naughten, Okay. A. et al. Future projections of Antarctic ice shelf melting primarily based on CMIP5 eventualities. J. Clim. 31, 5243–5261 (2018).
ADS
Article
Google Scholar
Lago, V. & England, M. H. Projected slowdown of Antarctic Backside Water formation in response to amplified meltwater contributions. J. Clim. 32, 6319–6335 (2019).
ADS
Article
Google Scholar
Jourdain, N. C. et al. Ocean circulation and sea-ice thinning induced by melting ice cabinets within the Amundsen Sea. J. Geophys. Res. Oceans 122, 2550–2573 (2017).
ADS
Article
Google Scholar
Golledge, N. R. et al. International environmental penalties of twenty-first-century ice-sheet soften. Nature 566, 65–72 (2019).
ADS
CAS
PubMed
Article
Google Scholar
England, M. H., Hutchinson, D. Okay., Santoso, A. & Sijp, W. P. Ice–ambiance feedbacks dominate the response of the local weather system to Drake Passage closure. J. Clim. 30, 5775–5790 (2017).
ADS
Article
Google Scholar
Purich, A., Cai, W., England, M. H. & Cowan, T. Proof for hyperlink between modelled developments in Antarctic sea ice and underestimated westerly wind modifications. Nat. Commun. 7, 10409 (2016).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Essential function for ocean warming and elevated ice-shelf soften in Antarctic sea-ice growth. Nat. Geosci. 6, 376–379 (2013).
ADS
CAS
Article
Google Scholar
Solar, S. & Eisenman, I. Noticed Antarctic sea ice growth reproduced in a local weather mannequin after correcting biases in sea ice drift velocity. Nat. Commun. 12, 1060 (2021).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Darelius, E., Fer, I. & Nicholls, Okay. W. Noticed vulnerability of Filchner-Ronne Ice Shelf to wind-driven influx of heat deep water. Nat. Commun. 7, 12300 (2016).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Hellmer, H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a giant Antarctic ice-shelf cavity by a redirected coastal present. Nature 485, 225–228 (2012).
ADS
CAS
PubMed
Article
Google Scholar
Paxman, G. J. G. et al. Reconstructions of Antarctic topography because the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).
Article
Google Scholar
Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Mannequin (PISM)–Half 2: parameter ensemble evaluation. Cryosphere 14, 633–656 (2020).
ADS
Article
Google Scholar
Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation because the Final Glacial Most. Quat. Sci. Rev. 100, 1–9 (2014).
ADS
Article
Google Scholar
Mouginot, J., Rignot, E. & Scheuchl, B. Continent-wide, interferometric SAR section, mapping of Antarctic ice velocity. Geophys. Res. Lett. 46, 9710–9718 (2019).
ADS
Article
Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, Okay. Tendencies, rhythms, and aberrations in international local weather 65 Ma to current. Science 292, 686–693 (2001).
ADS
CAS
PubMed
Article
Google Scholar
Meinshausen, M. et al. The RCP greenhouse gasoline concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
ADS
CAS
Article
Google Scholar
Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gasoline concentrations and their extensions to 2500. Geosci. Mannequin Dev. 13, 3571-3605 (2020).
ADS
CAS
Article
Google Scholar
Mazloff, M., Heimbach, P. & Wunsch, C. An eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 40, 880–899 (2010).
ADS
Article
Google Scholar
NOAA Nationwide Geophysical Knowledge Middle. 2-minute Gridded International Aid Knowledge (ETOPO2) v2. NOAA Nationwide Facilities for Environmental Data. https://doi.org/10.7289/V5J1012Q (2006).