Volonteri, M. The formation and evolution of huge black holes. Science 337, 544–547 (2012).
CAS
Google Scholar
Inayoshi, Okay. et al. The meeting of the primary huge black holes. Annu. Rev. Astron. Astrophys. 58, 27–97 (2020).
CAS
Google Scholar
Mortlock, D. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).
CAS
Google Scholar
Bañados, E. et al. An 800-million-solar-mass black gap in a considerably impartial Universe at a redshift of seven.5. Nature 553, 473–476 (2018).
Google Scholar
Hopkins, P. et al. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. II. Formation of crimson ellipticals. Astrophys. J. Suppl. Ser. 175, 390–422 (2008).
Google Scholar
Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).
CAS
Google Scholar
Ginolfi, M. et al. The infrared-luminous progenitors of high-z quasars. Mon. Not. R. Astron. Soc. 483, 1256–1264 (2019).
CAS
Google Scholar
Hathi, N. et al. Close to-infrared survey of the GOODS-North area: seek for luminous galaxy candidates at z > ~6.5. Astrophys. J. 757, 1 (2012).
Google Scholar
Bouwens, R. et al. UV-continuum slopes of ≳4,000 z ~ 4−8 galaxies from the HUDF/XDF, HUDF09, ERS, CANDELS-South, and CANDELS-North fields. Astrophys. J. 793, 115 (2014).
Google Scholar
Selsing, J. et al. An X-Shooter composite of vivid 1 < z < 2 quasars from UV to infrared. Astron. Astrophys. 585, A87 (2016).
Google Scholar
Alam, S. et al. The eleventh and twelfth knowledge releases of the Sloan Digital Sky Survey: closing knowledge from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).
Google Scholar
Xue, Y. et al. The two Ms Chandra Deep Area-North Survey and the 250 ks Prolonged Chandra Deep Area-South Survey: improved point-source catalogs. Astrophys. J. Suppl. Ser. 224, 15 (2016).
Google Scholar
Andrews, B. et al. Assessing radiation stress as a suggestions mechanism in star-forming galaxies. Astrophys. J. 727, 97 (2011).
Google Scholar
Beelen, A. et al. 350 μm mud emission from high-redshift quasars. Astrophys. J. 642, 2 (2006).
Google Scholar
Decarli, R. et al. Quickly star-forming galaxies adjoining to quasars at redshifts exceeding 6. Nature 545, 457–461 (2017).
CAS
Google Scholar
Barro, G. et al. CANDELS+3D-HST: compact SFGs at z ≃ 2–3, the progenitors of the primary quiescent galaxies. Astrophys. J. 791, 1 (2014).
Google Scholar
Tsai, C. et al. Tremendous-Eddington accretion within the WISE-selected extraordinarily luminous infrared galaxy W2246−0526. Astrophys. J. 819, 2 (2018).
Google Scholar
Lusso, E. et al. The X-ray to optical-UV luminosity ratio of X-ray chosen kind 1 AGN in XMM-COSMOS. Astron. Astrophys. 512, A34 (2010).
Google Scholar
Luo, B. et al. X-ray insights into the character of PHL 1811 analogs and weak emission-line quasars: unification with a geometrically thick accretion disk? Astrophys. J. 805, 2 (2015).
Google Scholar
Pu, X. et al. On the fraction of X-ray-weak quasars from the Sloan Digital Sky Survey. Astrophys. J. 900, 2 (2020).
Google Scholar
Wu, J. et al. A inhabitants of X-ray weak quasars: PHL 1811 analogs at excessive redshift. Astrophys. J. 736, 1 (2011).
Google Scholar
Valiante, R. et al. From the primary stars to the primary black holes. Mon. Not. R. Astron. Soc. 457, 3356–3371 (2016).
CAS
Google Scholar
Glickman, E. et al. FIRST-2MASS crimson quasars: transitional objects rising from the mud. Astrophys. J. 757, 1 (2012).
Google Scholar
Gehrels, N. Confidence limits for small numbers of occasions in astrophysical knowledge. Astrophys. J. 303, 336–346 (1986).
CAS
Google Scholar
Kato, N. et al. Subaru Excessive-z Exploration of Low-Luminosity Quasars (SHELLQs). IX. Identification of two crimson quasars at z > 5.6. Publ. Astron. Soc. Jpn 528, 35 (2020).
Google Scholar
Matsuoka, Y. et al. Subaru Excessive-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 quasars and luminous galaxies at 5.7 < z < 6.9. Astrophys. J. Suppl. Ser. 237, 5 (2018).
Google Scholar
Morishita, T. et al. SuperBoRG: exploration of level sources at z ~ 8 in HST parallel fields. Astrophys. J. 904, 1 (2020).
Google Scholar
Ni, Y. et al. QSO obscuration at excessive redshift (z ≳7): predictions from the BLUETIDES simulation. Mon. Not. R. Astron. Soc. 495, 2135–2151 (2020).
CAS
Google Scholar
Planck Collaboration Planck 2013 outcomes. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).
Google Scholar
Onoue, M. et al. Subaru Excessive-z Exploration of Low-luminosity Quasars (SHELLQs). XIV. A candidate kind II quasar at z = 6.1292. Astrophys. J. 919, 1 (2021).
Google Scholar
Antonucci, R. Unified fashions for energetic galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993).
CAS
Google Scholar
Urry, C. & Padovani, P. Unified schemes for radio-loud energetic galactic nuclei. Publ. Astron. Soc. Pac. 107, 803 (1995).
Google Scholar
Richards, et al. Purple and reddened quasars within the Sloan Digital Sky Survey. Astron. J 126, 1131–1147 (2003).
CAS
Google Scholar
Ross, N. et al. Extraordinarily crimson quasars from SDSS, BOSS and WISE: classification of optical spectra. Mon. Not. R. Astron. Soc. 453, 3932–3952 (2015).
CAS
Google Scholar
Hamann, F. et al. Extraordinarily crimson quasars in BOSS. Mon. Not. R. Astron. Soc. 464, 3431–3463 (2017).
CAS
Google Scholar
Glikman, E. et al. FIRST-2Mass sources beneath the APM detection threshold: a inhabitants of extremely reddened quasars. Astrophys. J. 607, 1 (2004).
Google Scholar
Urrutia, T. et al. The FIRST-2MASS Purple Quasar Survey. II. An anomalously excessive fraction of LoBALs in searches for dust-reddened quasars. Astrophys. J. 698, 2 (2009).
Google Scholar
Lacy, M. et al. Optical spectroscopy and X-ray detections of a pattern of quasars and energetic galactic nuclei chosen within the mid-infrared from two Spitzer area telescope wide-area surveys. Astron. J 133, 1 (2007).
Google Scholar
Glikman, E. et al. Mud reddened quasars in FIRST and UKIDSS: past the tip of the iceberg. Astrophys. J. 778, 186–205 (2013).
Google Scholar
Krawczyk, C. et al. Mining for mud in kind 1 quasars. Astrophys. J. 149, 6 (2015).
Google Scholar
Díaz-santos, T. et al. The a number of merger meeting of a hyperluminous obscured quasar at redshift 4.6. Science 362, L17 (2018).
Google Scholar
Díaz-santos, T. et al. Kinematics and star formation of high-redshift scorching dust-obscured quasars as seen by ALMA. Astron. Astrophys. 654, A37 (2021).
Google Scholar
Alexander, M. et al. Weighing the black holes in z ~ 2 submillimeter-emitting galaxies internet hosting energetic galactic nuclei. Astron. J 135, 1968–1981 (2008).
CAS
Google Scholar
Finnerty, L. et al. Quick outflows in scorching dust-obscured galaxies detected with Keck/NIRES. Astrophys. J. 905, 1 (2020).
Google Scholar
GAIA Collaboration Gaia Information Launch 2. Abstract of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Google Scholar
Brammer, G. Grizli: grism redshift and line evaluation software program. Astrophysics Supply Code Library ascl:1905.001 (2019).
Shindler, J. et al. The X-SHOOTER/ALMA pattern of quasars within the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. Astrophys. J. 905, 1 (2020).
Google Scholar
Yang, J. et al. Pōniuā’ena: a luminous z = 7.5 quasar internet hosting a 1.5 billion photo voltaic mass black gap. Astrophys. J. Lett. 897, L14 (2020).
CAS
Google Scholar
Bowler, R. et al. Unveiling the character of vivid z≃7 galaxies with the Hubble Area Telescope. Mon. Not. R. Astron. Soc. 466, 3612–3635 (2017).
CAS
Google Scholar
Matsuoka, Y. et al. Subaru Excessive-z Exploration of Low-luminosity Quasars (SHELLQs). I. Discovery of 15 quasars and vivid galaxies at 5.7 ≲ z ≲ 6.9. Astrophys. J. 828, 1 (2016).
Google Scholar
Matsuoka, Y. et al. Subaru Excessive-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z≤ 6.8. Publ. Astron. Soc. Jpn 70, S35 (2017).
Google Scholar
Matsuoka, Y. et al. Subaru Excessive-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 quasars and luminous galaxies at 5.7 ≤ z ≤ 6.9. Astrophys. J. Suppl. Ser. 237, 5 (2018).
Google Scholar
Matsuoka, Y. et al. Discovery of the primary low-luminosity quasar at z≥7. Astrophys. J. Lett. 872, L1 (2019).
Google Scholar
Matsuoka, Y. et al. Subaru Excessive-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 quasars and luminous galaxies at 5.7≤z≤7.0. Astrophys. J. 883, 2 (2019).
Google Scholar
Onoue, M. et al. Subaru Excessive-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black gap mass measurements of six quasars at 6.1 ≤z≤6.7. Astrophys. J. 880, 2 (2019).
Google Scholar
Schouws, S. et al. Important dust-obscured star formation in luminous Lyman-break galaxies at z ~ 7−8. Preprint at https://arxiv.org/abs/2105.12133 (2021).
Peng, C. Y. et al. Detailed decomposition of galaxy pictures. II. Past axisymmetric fashions. Astron. J. 139, 2097–2129 (2010).
Google Scholar
McMullin, J. et al. CASA structure and functions. Astron. Information Anal. Softw. Syst. XVI 376, 127 (2007).
Google Scholar
Martí-Vidal, I. et al. Over-resolution of compact sources in interferometric observations. Astron. Astrophys. 541, A135 (2012).
Google Scholar
Fujimoto, S. et al. Demonstrating A New Census of Infrared Galaxies with ALMA (DANCING-ALMA). I. FIR dimension and luminosity relation at z = 0−6 revealed with 1034 ALMA sources. Astrophys. J. 850, 1 (2017).
Google Scholar
Franco, M. et al. GOODS-ALMA: 1.1 mm galaxy survey. I. Supply catalog and optically darkish galaxies. Astron. Astrophys. 620, A152 (2018).
CAS
Google Scholar
Franco, M. et al. GOODS-ALMA: the sluggish downfall of star formation in z = 2–3 huge galaxies. Astron. Astrophys. 643, A30 (2020).
CAS
Google Scholar
Wang, T. et al. A dominant inhabitants of optically invisible huge galaxies within the early Universe. Nature 572, 211–214 (2019).
CAS
Google Scholar
Fudamoto, Y. et al. Regular, dust-obscured galaxies within the epoch of reionization. Nature 597, 489–492 (2021).
CAS
Google Scholar
Cortzen, I. et al. Deceptively chilly mud within the huge starburst galaxy GN20 at z ~ 4. Astron. Astrophys. 634, L14 (2007).
Google Scholar
Jin, S. et al. Discovery of 4 apparently chilly dusty galaxies at z = 3.62−5.85 within the COSMOS area: direct proof of cosmic microwave background influence on high-redshift galaxy observables. Astrophys. J. 887, 2 (2019).
Google Scholar
Da Cunha, E. et al. An ALMA survey of sub-millimeter galaxies within the prolonged Chandra Deep Area South: bodily properties derived from ultraviolet-to-radio modeling. Astrophys. J. 806, 110 (2015).
Google Scholar
Kajisawa, M. et al. MOIRCS Deep Survey. IX. Deep near-infrared imaging knowledge and supply catalog. Publ. Astron. Soc. Jpn 63, 379 (2011).
Google Scholar
Magnelli, B. et al. Evolution of the dusty infrared luminosity perform from z = 0 to z = 2.3 utilizing observations from Spitzer. Astron. Astrophys. 528, 35 (2011).
Google Scholar
Cowie, L. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). I. An ultradeep SCUBA-2 survey of the GOODS-N. Astrophys. J. 837, 139 (2017).
Google Scholar
Owen, F. Deep JVLA Imaging of GOODS-N at 20 cm. Astrophys. J. Suppl. Ser. 235, 2 (2018).
Google Scholar
Liu, D. et al. Tremendous-deblended mud emission in galaxies. I. The GOODS-North catalog and the cosmic star formation charge density out to redshift 6. Astrophys. J. 853, 172 (2018).
Google Scholar
Oliver, S. et al. The Herschel Multi-tiered Extragalactic Survey: HerMES. Mon. Not. R. Astron. Soc. 424, 1614–1645 (2018).
Google Scholar
Murphy, E. et al. The GOODS-N Jansky VLA 10-GHz pilot survey: sizes of star-forming μJy radio sources. Astrophys. J. 839, 1 (2017).
Google Scholar
Geach, J. et al. The SCUBA-2 Cosmology Legacy Survey: 850 μm maps, catalogues and quantity counts. Mon. Not. R. Astron. Soc. 465, 1789–1806 (2017).
CAS
Google Scholar
Nanni, R. et al. The X-ray properties of z ~ 6 luminous quasars. Astron. Astrophys. 603, A128 (2017).
Google Scholar
Vito, F. et al. Heavy X-ray obscuration in probably the most luminous galaxies found by WISE. Mon. Not. R. Astron. Soc. 474, 4528–4540 (2018).
CAS
Google Scholar
HI4PI Collaboration. HI4PI: A full-sky H I survey based mostly on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).
Google Scholar
Wang, F. et al. Revealing the accretion physics of supermassive black holes at redshift z ~ 7 with Chandra and infrared observations. Astrophys. J. 908, 1 (2021).
Google Scholar
Lusso, E. et al. The tight relation between X-Ray and ultraviolet luminosity of quasars. Astrophys. J. 819, 2 (2016).
Google Scholar
Vito, F. et al. The X-ray properties of z > 6 quasars: no evident evolution of accretion physics within the first Gyr of the Universe. Astron. Astrophys. 630, A118 (2019).
CAS
Google Scholar
Shemmer, O. et al. Chandra observations of the very best redshift quasars from the Sloan Digital Sky Survey. Astrophys. J. 644, 1 (2006).
Google Scholar
Chiaraluce, E. et al. The X-ray/UV ratio in energetic galactic nuclei: dispersion and variability. Astron. Astrophys. 619, A95 (2018).
CAS
Google Scholar
Zou, F. et al. X-ray properties of dust-obscured galaxies with broad optical/UV emission traces. Mon. Not. R. Astron. Soc. 499, 1823–1840 (2020).
CAS
Google Scholar
Kim, Y. et al. Excessive star formation charges of low Eddington ratio quasars at z ≳6. Astrophys. J. 879, 2 (2019).
Iwasawa, Okay. et al. C-GOALS: Chandra observations of an entire pattern of luminous infrared galaxies from the IRAS Revised Vivid Galaxy Survey. Astron. Astrophys. 529, A106 (2011).
Google Scholar
Veilleux, B. et al. A deep Hubble Area Telescope H-band imaging survey of huge gas-rich mergers. II. The QUEST QSOs. Astrophys. J. 701, 1 (2009).
Google Scholar
Ni, Q. et al. Connecting the X-ray properties of weak-line and typical quasars: testing for a geometrically thick accretion disk. Mon. Not. R. Astron. Soc. 480, 5184–5202 (2018).
CAS
Google Scholar
Marques-Chaves, R. et al. The invention of probably the most UV-Lyα luminous star-forming galaxy: a younger, dust- and metal-poor starburst with QSO-like luminosities. Mon. Not. R. Astron. Soc. 499, 1 (2020).
Google Scholar
Shibuya, T. et al. Morphologies of ~190,000 galaxies at z = 0−10 revealed with HST legacy knowledge. I. Measurement evolution. Astrophys. J. Suppl. Ser. 219, 15 (2019).
Google Scholar
Conroy, C. et al. The propagation of uncertainties in stellar inhabitants synthesis modeling. I. The relevance of unsure elements of stellar evolution and the preliminary mass perform to the derived bodily properties of galaxies. Astrophys. J. 699, 486 (2009).
Google Scholar
Conroy, C. & Gunn, J. The propagation of uncertainties in stellar inhabitants synthesis modeling. III. Mannequin calibration, comparability, and analysis. Astrophys. J. 712, 833 (2010).
CAS
Google Scholar
Brammer, G. et al. EAZY: A quick, public photometric redshift code. Astrophys. J. 686, 2 (2008).
Google Scholar
Polletta, M. et al. Spectral power distributions of exhausting X-ray chosen energetic galactic nuclei within the XMM-Newton medium deep survey. Astrophys. J. 663, 1 (2007).
Google Scholar
Glikman, E. et al. A near-infrared spectral template for quasars. Astrophys. J. 640, 2 (2006).
Google Scholar
Leipski, C. et al. Spectral power distributions of QSOs at z > 5: widespread energetic galactic nucleus-heated mud and sometimes sturdy star-formation. Astrophys. J. 785, 2 (2014).
Google Scholar
Nenkova, M. et al. AGN dusty tori. I. Dealing with of clumpy media. Astrophys. J. 685, 147 (2008).
Google Scholar
Leja, J. et al. Scorching mud in panchromatic SED becoming: identification of energetic galactic nuclei and improved galaxy properties. Astrophys. J. 854, 62 (2018).
Google Scholar
Diamond-Stanic, A. et al. Excessive-redshift SDSS quasars with weak emission traces. Astrophys. J. 699, 1 (2009).
Google Scholar
Andika, I. et al. Probing the character of high-redshift weak emission line quasars: a younger quasar with a starburst host galaxy. Astrophys. J. 903, 1 (2020).
Google Scholar
Wu, J. et al. X-ray and multiwavelength insights into the character of weak emission-line quasars at low redshift. Astrophys. J. 747, 1 (2012).
Google Scholar
Vito, F. et al. Chandra and Magellan/FIRE follow-up observations of PSO167-13: an X-ray weak QSO at z = 6.515. Astron. Astrophys. 649, A133 (2021).
CAS
Google Scholar
Gallagher, S. C. et al. X-raying the ultraluminous infrared starburst galaxy and broad absorption line QSO Markarian 231 with Chandra. Astrophys. J. 569, 655 (2002).
CAS
Google Scholar
Braito, V. et al. The XMM-Newton and BeppoSAX view of the extremely luminous infrared galaxy MKN 231. Astron. Astrophys. 420, 79 (2004).
CAS
Google Scholar
Lipari, S., Colina, L. & Macchetto, F. Galaxies with excessive infrared and Fe II emission. I. Markarian 231: the signature of a younger infrared QSO. Astron. Astrophys. 427, 174L (1994).
Google Scholar
Veilleux, S. et al. The whole ultraviolet spectrum of the archetypal “wind-dominated” quasar Mrk 231: absorption and emission from a high-speed dusty nuclear outflow. Astrophys. J. 825, 42 (2016).
Google Scholar
Kokorev, V. et al. The evolving interstellar medium of star-forming galaxies, as traced by stardust. Astrophys. J. 921, 1 (2021).
Google Scholar
Draine, B. & Li, A. Infrared emission from interstellar mud. IV. The silicate–graphite–PAH mannequin within the post-Spitzer period. Astrophys. J. 657, 2 (2007).
Google Scholar
Mullaney, J. et al. GOODS-Herschel: the far-infrared view of star formation in energetic galactic nucleus host galaxies since z≈3. Mon. Not. R. Astron. Soc. 419, 95–115 (2012).
Google Scholar
Shen, Y. et al. The Sloan Digital Sky Survey Reverberation Mapping Challenge: velocity shifts of quasar emission traces. Astrophys. J. 831, 1 (2016).
Google Scholar
Murphy, E. et al. Calibrating extinction-free star formation charge diagnostics with 33 GHz free-free emission in NGC 6946. Astrophys. J. 737, 67 (2011).
Google Scholar
Kroupa, P. On the variation of the preliminary mass perform. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).
Google Scholar
Simpson, J. et al. The SCUBA-2 Cosmology Legacy Survey: ALMA resolves the rest-frame far-infrared emission of sub-millimeter galaxies. Astrophys. J. 799, 81 (2015).
Google Scholar
Lehmer, B. et al. The evolution of regular galaxy X-ray emission by cosmic historical past: constraints from the 6 MS Chandra Deep Area-South. Astrophys. J. 825, 1 (2016).
Google Scholar
Fornasini, F. et al. The MOSDEF survey: the metallicity dependence of X-ray binary populations at z ~ 2. Astrophys. J. 885, 1 (2019).
Google Scholar
Fornasini, F. et al. Connecting the metallicity dependence and redshift evolution of high-mass X-ray binaries. Mon. Not. R. Astron. Soc. 495, 771–783 (2020).
CAS
Google Scholar
Novak, M. et al. An ALMA multiline survey of the interstellar medium of the redshift 7.5 quasar host galaxy J1342+0928. Astrophys. J. 881, 1 (2019).
Google Scholar
Magdis, G. et al. The evolving interstellar medium of star-forming galaxies since z = 2 as probed by their infrared spectral power distributions. Astrophys. J. 760, 1 (2012).
Google Scholar
Scoville, N. et al. ISM lots and the star formation legislation at z = 1 to six: ALMA observations of mud continuum in 145 galaxies within the COSMOS Survey Area. Astrophys. J. 820, 2 (2016).
Google Scholar
Zanella, A. et al. The [C ii] emission as a molecular fuel mass tracer in galaxies at high and low redshifts. Mon. Not. R. Astron. Soc. 481, 1976–1999 (2018).
CAS
Google Scholar
Crocker, A. et al. [C i](1–0) and [C i](2–1) in resolved native galaxies. Astrophys. J. 887, 1 (2019).
Google Scholar
Riechers, D. et al. A dust-obscured huge maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013).
CAS
Google Scholar
Strandet, M. et al. ISM properties of an enormous dusty star-forming galaxy found at z ~ 7. Astrophys. J. Lett. 842, L15 (2017).
Google Scholar
Solmon, P. et al. Mass, luminosity, and line width relations of galactic molecular clouds. Astrophys. J. 319, 730 (1987).
Google Scholar
Valentino, F. et al. A survey of atomic carbon [C i] in high-redshift main-sequence galaxies. Astrophys. J. 869, 1 (2018).
Google Scholar
Bothwell, S. et al. A survey of molecular fuel in luminous sub-millimetre galaxies. Mon. Not. R. Astron. Soc. 429, 3047–3067 (2013).
CAS
Google Scholar
Wang, R. et al. Star formation and fuel kinematics of quasar host galaxies at z ~ 6: new insights from ALMA. Astrophys. J. 773, 44 (2013).
Google Scholar
Decarli, R. et al. An ALMA [C ii] aurvey of 27 quasars at z ≳ 5.94. Astrophys. J. 854, 97 (2018).
Google Scholar
Izumi, T. et al. Subaru Excessive-z Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at z ≳ 6 studied with ALMA. Publ. Astron. Soc. Jpn 70, 3 (2018).
Google Scholar
Di Teodoro, T. et al. Spitzer observations of younger crimson quasars. Astrophys. J. 757, 2 (2012).
Google Scholar
Zakamska, N. et al. Discovery of utmost [O iii] λ5007 A outflows in high-redshift crimson quasars. Mon. Not. R. Astron. Soc. 459, 3144–3160 (2016).
CAS
Google Scholar
Bongiorno, A. et al. The MBH–M⊙ relation for X-ray-obscured, crimson QSOs at 1.2 < z < 2.6. Mon. Not. R. Astron. Soc. 443, 2077–2091 (2014).
CAS
Google Scholar
Dáz-Santos, T. et al. Explaining the [C ii] 157.7 μm deficit in luminous infrared galaxies—first outcomes from a Herschel/PACS research of the GOALS pattern. Astrophys. J. 774, 1 (2013).
Google Scholar
Spilker, J. et al. ALMA imaging and gravitational lens fashions of South Pole Telescope—chosen dusty, star-forming galaxies at excessive redshifts. Astrophys. J. 826, 2 (2016).
Google Scholar
Gullberg, B. et al. The mud and [C ii] morphologies of redshift ~4.5 sub-millimeter galaxies at ~200 computer decision: the absence of huge clumps within the interstellar medium at high-redshift. Astrophys. J. 859, 1 (2018).
Google Scholar
Marrone, D. et al. Galaxy progress in an enormous halo within the first billion years of cosmic historical past. Nature 553, 51–54 (2018).
CAS
Google Scholar
Laporte, N. et al. Mud within the reionization period: ALMA observations of a z = 8.38 gravitationally lensed galaxy. Astrophys. J. Lett. 837, L21 (2017).
Google Scholar
Hashimoto, T. et al. Massive Three Dragons: a z = 7.15 Lyman-break galaxy detected [O iii] 88 μm, [C ii] 158 μm, and mud continuum with ALMA. Publ. Astron. Soc. Jpn 71, 4 (2019).
Google Scholar
Bakx, T. et al. ALMA uncovers the [C ii] emission and heat mud continuum in a z = 8.31 Lyman break galaxy. Mon. Not. R. Astron. Soc. 493, 4294–4307 (2020).
CAS
Google Scholar
Izumi, T. et al. Subaru Excessive-z Exploration of Low-luminosity Quasars (SHELLQs). XII. Prolonged [C ii] construction (merger or outflow) in a z = 6.72 crimson quasar. Astrophys. J. 908, 2 (2021).
Google Scholar
Fan, L. et al. The spectral power distribution of the hyperluminous, scorching dust-obscured galaxy W2246−0526. Astrophys. J. 854, 2 (2018).
Google Scholar
Venemans, B. et al. Kiloparsec-scale ALMA Imaging of [C ii] and mud continuum emission of 27 quasar host galaxies at z ~ 6. Astrophys. J. 904, 130 (2020).
CAS
Google Scholar
Hashimoto, T. et al. Detections of [O iii] 88 μm in two quasars within the reionization epoch. Publ. Astron. Soc. Jpn 71, 6 (2019).
Google Scholar
Walter, F. et al. No proof for enhanced [O iii] 88 μm emission in a z ~ 6 quasar in comparison with its companion starbursting galaxy. Astrophys. J. Lett. 869, L22 (2018).
CAS
Google Scholar
Harikane, Y. et al. Massive inhabitants of ALMA galaxies at z > 6 with very excessive [O iii] 88 μm to [C ii] 158 μm flux ratios: proof of extraordinarily excessive ionization parameter or PDR deficit? Astrophys. J. 896, 2 (2020).
Google Scholar
Pensabene, A. et al. The ALMA view of the high-redshift relation between supermassive black holes and their host galaxies. Astron. Astrophys. 637, A84 (2020).
CAS
Google Scholar
Neeleman, M. et al. The kinematics of z ≳ 6 quasar host galaxies. Astrophys. J. 911, 141 (2021).
CAS
Google Scholar
Willott, C. et al. Star formation charge and dynamical mass of 108 photo voltaic mass black gap host galaxies at redshift 6. Astrophys. J. 801, 2 (2015).
Google Scholar
Willott, C. et al. A large dispersion in star formation charge and dynamical mass of 108 photo voltaic mass black gap host galaxies at redshift 6. Astrophys. J. 850, 108 (2017).
Google Scholar
Venemans, B. et al. The compact, ≃1 kpc host galaxy of a quasar at a redshift of seven.1. Astrophys. J. 837, 146 (2017).
Google Scholar
Izumi, T. et al. Subaru Excessive-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A much less biased view of the early co-evolution of black holes and host galaxies. Publ. Astron. Soc. Jpn 71, 6 (2019).
Google Scholar
Kormendy, J. & Ho, L. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).
CAS
Google Scholar
Reines, A. et al. Relations between central black gap mass and complete galaxy stellar mass within the native Universe. Astrophys. J. 813, 2 (2015).
Google Scholar
Ibar, E. et al. Deep multi-frequency radio imaging within the Lockman Gap—II. The spectral index of submillimetre galaxies. Mon. Not. R. Astron. Soc. 401, L53–L57 (2010).
Google Scholar
Yun, M. et al. Radio properties of infrared-selected galaxies within the IRAS 2 Jy pattern. Astrophys. J. 554, 2 (2001).
Google Scholar
Magnelli, B. et al. Far-infrared properties of submillimeter and optically faint radio galaxies. Astron. Astrophys. 518, L28 (2010).
Google Scholar
Delhaize, J. et al. The VLA-COSMOS 3 GHz Massive Challenge: the infrared-radio correlation of star-forming galaxies and AGN to z ≲ 6. Astron. Astrophys. 602, A4 (2017).
Google Scholar
Dunlop, J. et al. Quasars, their host galaxies and their central black holes. Mon. Not. R. Astron. Soc. 401, 1095–1135 (2003).
Google Scholar
Valiante, R. et al. The origin of the mud in high-redshift quasars: the case of SDSS J1148+5251. Mon. Not. R. Astron. Soc. 416, 1916–1935 (2011).
Google Scholar
Valiante, R. et al. Excessive-redshift quasars host galaxies: is there a stellar mass disaster? Mon. Not. R. Astron. Soc. 444, 2442–2455 (2014).
Google Scholar
Pezzulli, E. et al. Faint progenitors of luminous z ~ 6 quasars: why don’t we see them? Mon. Not. R. Astron. Soc. 466, 2131–2142 (2017).
CAS
Google Scholar
Mazzucchelli, C. et al. Bodily properties of 15 quasars at z ≳6.5. Astrophys. J. 849, 2 (2017).
Morganson, E. et al. The primary high-redshift quasar from Pan-STARRS. Astron. J 143, 6 (2012).
Google Scholar
Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).
Google Scholar
Willott, C. et al. The Canada–France Excessive-z Quasar Survey: 9 new quasars and the luminosity perform at redshift 6. Astron. J 139, 906–918 (2010).
CAS
Google Scholar
Davies, F. B., Hennawi, J. F. & Eilers, A.-C. Proof for low radiative effectivity or extremely obscured progress of z > 7 quasars. Astrophys. J. Lett. 884, L19 (2019).
Vestergaard, M. & Peterson, B. M. Figuring out central black gap lots in distant energetic galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689 (2006).
CAS
Google Scholar
Anderson, J. Empirical Fashions for the WFC3/IR PSF (Area Telescope Science Institute, 2016).
Simply, D. et al. The X-ray properties of probably the most luminous quasars from the Sloan Digital Sky Survey. Astrophys. J. 665, 2 (2007).
Google Scholar
Sargsyan, L. et al. [C ii] 158 μm luminosities and star formation charge in dusty starbursts and energetic galactic nuclei. Astrophys. J. 755, 2 (2012).
Google Scholar