Giglio, L., Schroeder, W. & Justice, C. O. The gathering 6 MODIS energetic fireplace detection algorithm and fireplace merchandise. Distant Sens. Environ. 178, 31–41 (2016).
ADS
PubMed
PubMed Central
Google Scholar
Grace, J., José, J. S., Meir, P., Miranda, H. S. & Montes, R. A. Productiveness and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
Google Scholar
Van Der Werf, G. R. et al. World fireplace emissions estimates throughout 1997–2016. Earth Syst. Sci. Knowledge 9, 697–720 (2017).
ADS
Google Scholar
Bastin, J.-F. et al. The worldwide tree restoration potential. Science 365, 76–79 (2019).
ADS
CAS
Google Scholar
Russell-Smith, J. et al. Alternatives and challenges for savanna burning emissions abatement in southern Africa. J. Environ. Handle. 288, 112414 (2021).
CAS
PubMed
Google Scholar
Andela, N. et al. A human-driven decline in international burned space. Science 356, 1356–1362 (2017).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Wu, C. et al. Historic and future international burned space with altering local weather and human demography. One Earth 4, 517–530 (2021).
Google Scholar
Pellegrini, A. F. A. et al. Hearth frequency drives decadal modifications in soil carbon and nitrogen and ecosystem productiveness. Nature 553, 194–198 (2018).
ADS
CAS
PubMed
Google Scholar
Higgins, S. I. et al. Results of 4 many years of fireplace manipulation on woody vegetation construction in savanna. Ecology 88, 1119–1125 (2007).
Google Scholar
Staver, A. C., Archibald, S. & Levin, S. A. The worldwide extent and determinants of savanna and forest as different biome states. Science 334, 230–232 (2011).
ADS
CAS
PubMed
MATH
Google Scholar
Shi, Z. et al. The age distribution of worldwide soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
ADS
CAS
Google Scholar
Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Hearth alters ecosystem carbon and vitamins however not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).
PubMed
Google Scholar
Tilman, D. et al. Hearth suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).
Google Scholar
Mokany, Okay., Raison, R. J. & Prokushkin, A. S. Vital evaluation of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).
ADS
Google Scholar
de Miranda, S. D. C. et al. Regional variations in biomass distribution in Brazilian savanna woodland. Biotropica 46, 125–138 (2014).
Google Scholar
Wigley, B. J., Cramer, M. D. & Bond, W. J. Sapling survival in a continuously burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).
Google Scholar
Sankaran, M. et al. Determinants of woody cowl in African savannas. Nature 438, 846–849 (2005).
ADS
CAS
PubMed
Google Scholar
Staver, A. C., Botha, J. & Hedin, L. Soils and fireplace collectively decide vegetation construction in an African savanna. New Phytol. 216, 1151–1160 (2017).
CAS
PubMed
Google Scholar
Zhou, Y., Wigley, B. J., Case, M. F., Coetsee, C. & Staver, A. C. Rooting depth as a key woody practical trait in savannas. New Phytol. 227, 1350–1361 (2020).
PubMed
Google Scholar
Govender, N., Trollope, W. S. W., Van, & Wilgen, B. W. The impact of fireplace season, fireplace frequency, rainfall and administration on fireplace depth in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).
Google Scholar
Colgan, M. S., Asner, G. P. & Swemmer, T. Harvesting tree biomass on the stand degree to evaluate the accuracy of area and airborne biomass estimation in savannas. Ecol. Appl. 23, 1170–1184 (2013).
PubMed
Google Scholar
Davies, A. B. & Asner, G. P. Elephants restrict aboveground carbon features in African savannas. Glob. Change Biol. 25, 1368–1382 (2019).
ADS
Google Scholar
Butnor, J. R. et al. Utility of ground-penetrating radar as a root biomass survey device in forest methods. Soil Sci. Soc. Am. J. 67, 1607–1615 (2003).
ADS
CAS
Google Scholar
Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer actions exacerbate grass declines throughout drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).
Google Scholar
Ryan, C. M., Williams, M. & Grace, J. Above- and belowground carbon shares in a miombo woodland panorama of Mozambique. Biotropica 43, 423–432 (2011).
Google Scholar
Swezy, D. M. & Agee, J. Okay. Prescribed-fire results on fine-root and tree mortality in old-growth ponderosa pine. Can. J. For. Res. 21, 626–634 (1991).
Google Scholar
Canadell, J. et al. Most rooting depth of vegetation sorts on the international scale. Oecologia 108, 583–595 (1996).
ADS
CAS
PubMed
Google Scholar
Coetsee, C., Bond, W. J. & February, E. C. Frequent fireplace impacts soil nitrogen and carbon in an African savanna by altering woody cowl. Oecologia 162, 1027–1034 (2010).
ADS
PubMed
Google Scholar
Holdo, R. M., Mack, M. C. & Arnold, S. G. Tree canopies clarify fireplace results on soil nitrogen, phosphorus and carbon in a savanna ecosystem. J. Veg. Sci. 23, 352–360 (2012).
Google Scholar
Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productiveness: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).
PubMed
Google Scholar
Wigley, B. J., Augustine, D. J., Coetsee, C., Ratnam, J. & Sankaran, M. Grasses proceed to trump timber at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology 101, e03008 (2020).
PubMed
Google Scholar
Khomo, L., Trumbore, S., Bern, C. R. & Chadwick, O. A. Timescales of carbon turnover in soils with blended crystalline mineralogies. Soil 3, 17–30 (2017).
ADS
CAS
Google Scholar
Six, J., Conant, R. T., Paul, E. A. & Paustian, Okay. Stabilization mechanisms of soil natural matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).
CAS
Google Scholar
Abreu, R. C. R. et al. The biodiversity price of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).
ADS
PubMed
PubMed Central
Google Scholar
Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. The difficulty with timber: afforestation plans for Africa. Tendencies Ecol. Evol. 34, 963–965 (2019).
PubMed
Google Scholar
West, T. A., Börner, J. & Fearnside, P. M. Climatic advantages from the 2006–2017 averted deforestation in Amazonian Brazil. Entrance. For. Glob. Change 2, 52 (2019).
Google Scholar
Aleman, J. C., Blarquez, O. & Staver, C. A. Land-use change outweighs projected results of fixing rainfall on tree cowl in sub-Saharan Africa. Glob. Change Biol. 22, 3013–3025 (2016).
ADS
Google Scholar
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland enlargement underneath local weather change. Nat. Clim. Change 6, 166–171 (2016).
ADS
Google Scholar
Ratajczak, Z., Nippert, J. B. & Collins, S. L. Woody encroachment decreases range throughout North American grasslands and savannas. Ecology 93, 697–703 (2012).
PubMed
Google Scholar
Smit, I. P. & Prins, H. H. Predicting the consequences of woody encroachment on mammal communities, grazing biomass and fireplace frequency in African savannas. PLoS One 10, e0137857 (2015).
PubMed
PubMed Central
Google Scholar
Huxman, T. E. et al. Ecohydrological implications of woody plant encroachment. Ecology 86, 308–319 (2005).
Google Scholar
Hermoso, V., Regos, A., Morán-Ordóñez, A., Duane, A. & Brotons, L. Tree planting: a double-edged sword to combat local weather change in an period of megafires. Glob. Change Biol. 27, 3001–3003 (2021).
Google Scholar
Venter F. A. Classification of Land for Administration Planning within the Kruger Nationwide Park. PhD thesis, Univ. South Africa (1990).
Biggs, R., Biggs, H. C., Dunne, T. T., Govender, N. & Potgieter, A. L. F. Experimental burn plot trial within the Kruger Nationwide Park: historical past, experimental design and options for information evaluation. Koedoe 46, 15 (2003).
Google Scholar
Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations within the steady carbon and nitrogen isotopic compositions of crops from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).
Google Scholar
Zhou, Y., Boutton, T. W. & Ben Wu, X. Soil carbon response to woody plant encroachment: significance of spatial heterogeneity and deep soil storage. J. Ecol. 105, 1738–1749 (2017).
CAS
Google Scholar
Sheldrick B. & Wang C. In Soil Sampling and Strategies of Evaluation (ed. Carter, M. R.) 499–511 (CRC Press, 1993).
Butnor, J. R. et al. Floor-based GPR underestimates below-stump root biomass. Plant Soil 402, 47–62 (2016).
CAS
Google Scholar
Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage—an R bundle for picture processing with purposes to mobile phenotypes. Bioinformatics 26, 979–981 (2010).
CAS
PubMed
PubMed Central
Google Scholar
Hirano, Y. et al. Limiting components within the detection of tree roots utilizing ground-penetrating radar. Plant Soil 319, 15–24 (2009).
CAS
Google Scholar
Popescu, S. C. & Wynne, R. H. Seeing the timber within the forest. Photogramm. Eng. Distant Sensing 70, 589–604 (2004).
Google Scholar
Case, M. F., Wigley-Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Extreme drought limits timber in a semi-arid savanna. Ecology 100, e02842 (2019).
PubMed
Google Scholar
Beucher S. & Meyer F. In Mathematical Morphology in Picture Processing (ed. Dougherty, E. R.) 433–481 (CRC Press, 1993).
Nickless, A., Scholes, R. J. & Archibald, S. A way for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations. S. Afr. J. Sci. 107, 1–10 (2011).
Google Scholar
Plowright A. & Roussel J.-R. ForestTools: analyzing remotely sensed forest information. R bundle model 0.2.1. https://CRAN.R-project.org/bundle=ForestTools (2020).
Hijmans R. J. raster: geographic information evaluation and modeling. R bundle model 3.3-7. https://CRAN.R-project.org/bundle=raster (2020).
Penman J. et al. (eds) Good Follow Steerage for Land Use, Land-Use Change and Forestry (Intergovernmental Panel on Local weather Change, 2003).
Kuznetsova, A., Brockhoff, P. & Christensen, R. lmerTest bundle: exams in linear blended results fashions. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar