Schuchat, A. et al. Bacterial meningitis in the US in 1995. N. Engl. J. Med. 337, 970–976 (1997).
CAS
PubMed
Google Scholar
van de Beek, D. et al. Medical options and prognostic components in adults with bacterial meningitis. N. Engl. J. Med. 351, 1849–1859 (2004).
PubMed
Google Scholar
Charlier, C. et al. Medical options and prognostic components of listeriosis: the MONALISA nationwide potential cohort examine. Lancet Infect. Dis. 17, 510–519 (2017).
PubMed
Google Scholar
Mailles, A. & Stahl, J. Infectious encephalitis in France in 2007: a nationwide potential examine. Clin. Infect. Dis. 49, 1838–1847 (2009).
PubMed
Google Scholar
Skogberg, Okay. et al. Medical presentation and final result of listeriosis in sufferers with and with out immunosuppressive remedy. Clin. Infect. Dis. 14, 815–821 (1992).
CAS
PubMed
Google Scholar
Maury, M. M. et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 48, 308–313 (2016).
CAS
PubMed
PubMed Central
Google Scholar
Disson, O. et al. Conjugated motion of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455, 1114–1118 (2008).
ADS
CAS
PubMed
Google Scholar
Drevets, D. A., Jelinek, T. A. & Freitag, N. E. Listeria monocytogenes-infected phagocytes can provoke central nervous system an infection in mice. Infect. Immun. 69, 1344–1350 (2001).
CAS
PubMed
PubMed Central
Google Scholar
Be part of-Lambert, O. F. et al. Listeria monocytogenes-infected bone marrow myeloid cells promote bacterial invasion of the central nervous system. Cell. Microbiol. 7, 167–180 (2005).
CAS
PubMed
Google Scholar
Cantinelli, T. et al. “Epidemic clones” of Listeria monocytogenes are widespread and historic clonal teams. J. Clin. Microbiol. 51, 3770–3779 (2013).
PubMed
PubMed Central
Google Scholar
Bécavin, C. et al. Comparability of extensively used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying variations in pathogenicity. mBio 5, e00969-14 (2014).
PubMed
PubMed Central
Google Scholar
Pizarro-Cerdá, J., Lecuit, M. & Cossart, P. in Molecular Mobile Microbiology Vol. 31 (eds Sansonetti, P. & Zychlinsky, A.) 161–177 (Tutorial Press, 2002).
Boring, L. et al. Impaired monocyte migration and decreased sort 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Make investments. 100, 2552–2561 (1997).
CAS
PubMed
PubMed Central
Google Scholar
Kocks, C. et al. L. monocytogenes-induced actin meeting requires the actA gene product, a floor protein. Cell 68, 521–531 (1992).
CAS
PubMed
Google Scholar
Tilney, L. G. & Portnoy, D. A. Actin filaments and the expansion, motion, and unfold of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).
CAS
PubMed
Google Scholar
Lecuit, M. et al. A transgenic mannequin for listeriosis: function of internalin in crossing the intestinal barrier. Science 292, 1722–1725 (2001).
ADS
CAS
PubMed
Google Scholar
Moura, A. et al. Entire genome-based inhabitants biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2, 16185 (2016).
CAS
PubMed
PubMed Central
Google Scholar
Gaillard, J. L., Jaubert, F. & Berche, P. The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J. Exp. Med. 183, 359–369 (1996).
CAS
PubMed
Google Scholar
Braun, L. et al. InlB: an invasion protein of Listeria monocytogenes with a novel sort of floor affiliation. Mol. Microbiol. 25, 285–294 (1997).
CAS
PubMed
Google Scholar
Dramsi, S. et al. Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a floor protein of the internalin multigene household. Mol. Microbiol. 16, 251–261 (1995).
CAS
PubMed
Google Scholar
Lane, F. C. & Unanue, E. R. Requirement of thymus (T) lymphocytes for resistance to listeriosis. J. Exp. Med. 135, 1104–1112 (1972).
CAS
PubMed
PubMed Central
Google Scholar
Schlüter, D. et al. Systemic immunization induces protecting CD4+ and CD8+ T cell‐mediated immune responses in murine Listeria monocytogenes meningoencephalitis. Eur. J. Immunol. 25, 2384–2391 (1995).
PubMed
Google Scholar
Khanna, Okay. M., McNamara, J. T. & Lefrançois, L. In situ imaging of the endogenous CD8 T cell response to an infection. Science 318, 116–120 (2007).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Doherty, P. Cell-mediated cytotoxicity. Cell 75, 607–612 (1993).
CAS
PubMed
Google Scholar
Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complicated. Cell 85, 817–827 (1996).
CAS
PubMed
Google Scholar
Shen, Y., Naujokas, M., Park, M. & Ireton, Okay. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510 (2000).
CAS
PubMed
Google Scholar
Bierne, H. et al. A job for cofilin and LIM kinase in Listeria-induced phagocytosis. J. Cell Biol. 155, 101 (2001).
CAS
PubMed
PubMed Central
Google Scholar
Weidner, Okay. M. et al. Interplay between Gab1 and the c-Met receptor tyrosine kinase is liable for epithelial morphogenesis. Nature 384, 173–176 (1996).
ADS
CAS
PubMed
Google Scholar
Bowers, D. C. et al. Scatter issue/hepatocyte development issue protects towards cytotoxic demise in human glioblastoma through phosphatidylinositol 3-kinase- and AKT-dependent pathways. Most cancers Res. 60, 4277–4283 (2000).
CAS
PubMed
Google Scholar
Xiao, G.-H. et al. Anti-apoptotic signaling by hepatocyte development issue/Met through the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc. Natl Acad. Sci. USA 98, 247–252 (2001).
ADS
CAS
PubMed
Google Scholar
Tsai, Y. H. L., Orsi, R. H., Nightingale, Okay. Okay. & Wiedmann, M. Listeria monocytogenes internalins are extremely numerous and advanced by recombination and optimistic choice. Infect. Genet. Evol. 6, 378–389 (2006).
CAS
PubMed
Google Scholar
Louie, A., Zhang, T., Becattini, S., Waldor, M. Okay. & Portnoy, D. A. A multiorgan trafficking circuit offers purifying collection of Listeria monocytogenes virulence genes. mBio 10, e02948-19 (2019).
PubMed
PubMed Central
Google Scholar
Coureuil, M., Lécuyer, H., Bourdoulous, S. & Nassif, X. A journey into the mind: perception into how bacterial pathogens cross blood–mind boundaries. Nat. Rev. Microbiol. 15, 149–159 (2017).
CAS
PubMed
Google Scholar
Devraj, G. et al. HIF-1α is concerned in blood–mind barrier dysfunction and paracellular migration of micro organism in pneumococcal meningitis. Acta Neuropathol. 140, 183–208 (2020).
CAS
PubMed
PubMed Central
Google Scholar
Liu, Y., Li, J. Y., Chen, S. T., Huang, H. R. & Cai, H. The rLrp of Mycobacterium tuberculosis inhibits proinflammatory cytokine manufacturing and downregulates APC perform in mouse macrophages through a TLR2-mediated PI3K/Akt pathway activation-dependent mechanism. Cell. Mol. Immunol. 13, 729–746 (2016).
CAS
PubMed
Google Scholar
Quan, J. H. et al. Intracellular networks of the PI3K/AKT and MAPK pathways for regulating Toxoplasma gondii-induced IL-23 and IL-12 manufacturing in human THP-1 cells. PLoS One 10, e0141550 (2015).
PubMed
PubMed Central
Google Scholar
Klenerman, P. & Hill, A. T cells and viral persistence: classes from numerous infections. Nat. Immunol. 6, 873–879 (2005).
CAS
PubMed
Google Scholar
Protzer, U., Maini, M. Okay. & Knolle, P. A. Residing within the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).
CAS
PubMed
Google Scholar
Mackaness, G. B. Mobile resistance to an infection. J. Exp. Med. 116, 381–406 (1962).
CAS
PubMed
PubMed Central
Google Scholar
Pamer, E. G. Immune responses to Listeria monocytogenes. Nat. Rev. Immunol. 4, 812–823 (2004).
Google Scholar
Shen, H. et al. Recombinant Listeria monocytogenes as a reside vaccine car for the induction of protecting anti-viral cell-mediated immunity. Proc. Natl Acad. Sci. USA 92, 3987–3991 (2006).
ADS
Google Scholar
Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).
ADS
CAS
PubMed
Google Scholar
Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon most cancers metastasis. Nature 554, 538–543 (2018).
ADS
CAS
Google Scholar
Ricci, A. et al. Listeria monocytogenes contamination of ready-to-eat meals and the danger for human well being within the EU. EFSA J. 16, 5134 (2018).
Maury, M. M. et al. Spontaneous lack of virulence in pure populations of Listeria monocytogenes. Infect. Immun. 85, e00541-17 (2017).
PubMed
PubMed Central
Google Scholar
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to incapability to provoke V(D)J rearrangement. Cell 68, 855–867 (1992).
CAS
PubMed
Google Scholar
Malissen, M. et al. Altered T cell improvement in mice with a focused mutation of the CD3-epsilon gene. EMBO J. 14, 4641–4653 (1995).
CAS
PubMed
PubMed Central
Google Scholar
Kitamura, D., Roes, J., Kühn, R. & Rajewsky, Okay. A B cell-deficient mouse by focused disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).
ADS
CAS
PubMed
Google Scholar
Jung, S. et al. Evaluation of fractalkine receptor CX3CR1 perform by focused deletion and inexperienced fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).
CAS
PubMed
PubMed Central
Google Scholar
Hameyer, D. et al. Toxicity of ligand-dependent Cre recombinases and era of a conditional Cre deleter mouse permitting mosaic recombination in peripheral tissues. Physiol. Genomics 31, 32–41 (2007).
CAS
PubMed
Google Scholar
Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Strategies 2, 419–426 (2005).
CAS
PubMed
Google Scholar
Matsuzawa, A. et al. A brand new allele of the lpr locus, lprcg, that enhances the gld gene in induction of lymphadenopathy within the mouse. J. Exp. Med. 171, 519–531 (1990).
CAS
PubMed
Google Scholar
Kägi, D. et al. Cytotoxicity mediated by T cells and pure killer cells is vastly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).
ADS
PubMed
Google Scholar
Huang, Q. Q. et al. FLIP: a novel regulator of macrophage differentiation and granulocyte homeostasis. Blood 116, 4968–4977 (2010).
CAS
PubMed
PubMed Central
Google Scholar
Huh, C.-G. et al. Hepatocyte development issue/c-met signaling pathway is required for environment friendly liver regeneration and restore. Proc. Natl Acad. Sci. USA 101, 4477–4482 (2004).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Canli, Ö. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Most cancers Cell 32, 869–883 (2017).
ADS
CAS
PubMed
Google Scholar
Monk, I. R., Gahan, C. G. M. & Hill, C. Instruments for purposeful postgenomic evaluation of listeria monocytogenes. Appl. Environ. Microbiol. 74, 3921–3934 (2008).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Arnaud, M., Chastanet, A. & Débarbouillé, M. New vector for environment friendly allelic alternative in naturally nontransformable, low-GC-content, Gram-positive micro organism. Appl. Environ. Microbiol. 70, 6887–6891 (2004).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Argov, T., Rabinovich, L., Sigal, N. & Herskovits, A. A. An efficient counterselection system for Listeria monocytogenes and its use to characterize the monocin genomic area of pressure 10403S. Appl. Environ. Microbiol. 83, e02927-16 (2017).
PubMed
PubMed Central
Google Scholar
Balestrino, D. et al. Single-cell strategies utilizing chromosomally tagged fluorescent micro organism to check Listeria monocytogenes an infection processes. Appl. Environ. Microbiol. 76, 3625–3636 (2010).
ADS
CAS
PubMed
PubMed Central
Google Scholar
Quereda, J. J. et al. A twin microscopy-based assay to evaluate Listeria monocytogenes mobile entry and vacuolar escape. Appl. Environ. Microbiol. 82, 211–217 (2016).
ADS
CAS
PubMed
Google Scholar
Disson, O. et al. Modeling human listeriosis in pure and genetically engineered animals. Nat. Protoc. 4, 799–810 (2009).
CAS
PubMed
Google Scholar
Lu, H. et al. Subcutaneous angiotensin II infusion utilizing osmotic pumps induces aortic aneurysms in mice. J. Vis. Exp. 103, e53191 (2015).
Google Scholar